4,869 research outputs found

    Transmission efficiency limit for nonlocal metalenses

    Full text link
    The rapidly advancing capabilities in nanophotonic design are enabling complex functionalities limited mainly by physical bounds. The efficiency of transmission is a major consideration, but its ultimate limit remains unknown for most systems. Here, we introduce a matrix formalism that puts a fundamental bound on the channel-averaged transmission efficiency of any passive multi-channel optical system based only on energy conservation and the desired functionality, independent of the interior structure and material composition. Applying this formalism to diffraction-limited nonlocal metalenses with a wide field of view, we show that the transmission efficiency must decrease with the numerical aperture for the commonly adopted designs with equal entrance and output aperture diameters. We also show that reducing the size of the entrance aperture can raise the efficiency bound. This work reveals a fundamental limit on the transmission efficiency as well as providing guidance for the design of high-efficiency multi-channel optical systems

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No Pure-Pixel Case

    Full text link
    In blind hyperspectral unmixing (HU), the pure-pixel assumption is well-known to be powerful in enabling simple and effective blind HU solutions. However, the pure-pixel assumption is not always satisfied in an exact sense, especially for scenarios where pixels are heavily mixed. In the no pure-pixel case, a good blind HU approach to consider is the minimum volume enclosing simplex (MVES). Empirical experience has suggested that MVES algorithms can perform well without pure pixels, although it was not totally clear why this is true from a theoretical viewpoint. This paper aims to address the latter issue. We develop an analysis framework wherein the perfect endmember identifiability of MVES is studied under the noiseless case. We prove that MVES is indeed robust against lack of pure pixels, as long as the pixels do not get too heavily mixed and too asymmetrically spread. The theoretical results are verified by numerical simulations

    Performance of CMS ECAL Preshower in 2007 test beam

    Get PDF
    The Preshower detector is part of the CMS Electromagnetic Calorimeter, located in the endcap regions, in front of the lead tungstate crystals. It consist of two orthogonal planes of silicon strip sensors interleaved with two planes of lead absorbers. A combined beam test of close-to-final prototypes of the Hadron calorimeter, the crystal calorimeter and the Preshower detector was performed in the summer of 2007. Calibrations were made using electron and pion data. The combined crystal and Preshower energy resolution was studied using electrons. Good signal/noise performance was obtained in both sets of measurement

    Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator

    Get PDF
    Abstract—Pentacene-based organic thin-film transistors with solution-process hafnium oxide (HfOx) as gate insulating layer have been demonstrated. The solution-process HfOx could not only exhibit a high-permittivity (κ = 11) dielectric constant but also has good dielectric strength. Moreover, the root-mean-square surface roughness and surface energy (γs) on the surface of the HfOx layer were 1.304 nm and 34.24 mJ/cm2, respectively. The smooth, as well as hydrophobic, surface of HfOx could facilitate the direct deposition of the pentacene film without an additional polymer treatment layer, leading to a high field-effect mobility of 3.8 cm2/(V · s). Index Terms—Hafnium oxide, high permittivity, organic thinfilm transistor (OTFT), solution process, surface energy

    Reward prediction errors arising from switches between major and minor modes in music: An fMRI study

    Full text link
    Evidence has accumulated that prediction error processing plays a role in the enjoyment of music listening. The present study examined listeners' neural responses to the signed reward prediction errors (RPEs) arising from switches between major and minor modes in music. We manipulated the final chord of J. S. Bach's keyboard pieces so that each major-mode passage ended with either the major (Major-Major) or minor (Major-Minor) tonic chord, and each minor-mode passage ended with either the minor (Minor-Minor) or major (Minor-Major) tonic chord. In Western music, the major and minor modes have positive and negative connotations, respectively. Therefore, the outcome of the final chord in Major-Minor stimuli was associated with negative RPE, whereas that in Minor-Major was associated with positive RPE. Twenty-three musically experienced adults underwent functional magnetic resonance imaging while listening to Major-Major, Major-Minor, Minor-Minor, and Minor-Major stimuli. We found that activity in the subgenual anterior cingulate cortex (extending into the ventromedial prefrontal cortex) during the final chord for Major-Major was significantly higher than that for Major-Minor. Conversely, a frontoparietal network for Major-Minor exhibited significantly increased activity compared to Major-Major. The contrasts between Minor-Minor and Minor-Major yielded regions implicated in interoception. We discuss our results in relation to executive functions and the emotional connotations of major versus minor mode.Comment: submitted to Psychophysiolog

    Rupture of Renal Pelvis in an Adult with Congenital Ureteropelvic Junction Obstruction After Blunt Abdominal Trauma

    Get PDF
    Isolated injury to the renal pelvis following blunt abdominal trauma is very rare. However, a pre-existing renal abnormality will increase the risk of rupture. We present a 24-year-old man with rupture of the left renal pelvis following blunt abdominal trauma. He had pre-existing left ureteropelvic junction (UPJ) obstruction. Delayed computed tomography scan with excretory phase revealed contrast medium extravasation from the left UPJ, and left renal pelvis rupture was diagnosed. He was managed successfully with ureteral double-J stenting for 2 months

    Effect on Spasticity After Performance of Dynamic-Repeated-Passive Ankle Joint Motion Exercise in Chronic Stroke Patients

    Get PDF
    Spasticity associated with abnormal muscle tone is a common motor disorder following stroke, and the spastic ankle may affect ambulatory function. The purpose of this study was to investigate the short-term effect of dynamic-repeated-passive ankle movements with weight loading on ambulatory function and spastic hypertonia of chronic stroke patients. In this study, 12 chronic stroke patients with ankle spasticity and inefficient ambulatory ability were enrolled. Stretching of the plantar-flexors of the ankle in the standing position for 15 minutes was performed passively by a constant-speed and electrically powered device. The following evaluations were done before and immediately after the dynamic-repeated-passive ankle movements. Spastic hypertonia was assessed by the Modified Ashworth Scale (MAS; range, 0–4), Achilles tendon reflexes test (DTR; range, 0–4), and ankle clonus (range, 0–5). Improvement in ambulatory ability was determined by the timed up-and-go test (TUG), the 10-minute walking test, and cadence (steps/minute). In addition, subjective experience of the influence of ankle spasticity on ambulation was scored by visual analog scale (VAS). Subjective satisfaction with the therapeutic effect of spasticity reduction was evaluated by a five-point questionnaire (1 = very poor, 2 = poor, 3 = acceptable, 4 = good, 5 = very good). By comparison of the results before and after intervention, these 12 chronic stroke patients presented significant reduction in MAS and VAS for ankle spasticity, the time for TUG and 10-minute walking speed (p < 0.01). The cadence also increased significantly (p < 0.05). In addition, subjective satisfaction with the short-term therapeutic effect was mainly good (ranging from acceptable to very good). In conclusion, 15 minutes of dynamic-repeated-passive ankle joint motion exercise with weight loading in the standing position by this simple constant-speed machine is effective in reducing ankle spasticity and improving ambulatory ability

    Comparison of secondary signs as shown by unenhanced helical computed tomography in patients with uric acid or calcium ureteral stones

    Get PDF
    AbstractUnenhanced helical computed tomography (UHCT) has evolved into a well-accepted diagnostic method in patients with suspected ureterolithiasis. UHCT not only shows stones within the lumen of the ureter, it also permits evaluation of the secondary signs associated with ureteral obstruction from stones. However, there we could find no data on how secondary signs might differ in relation to different compositions of ureteral stones. In this study, we compared the degree of secondary signs revealed by UHCT in uric acid stone formers and in patients forming calcium stones. We enrolled 117 patients with ureteral stones who underwent UHCT examination and Fourier transform infra-red analysis of stone samples. Clinical data were collected as follows: age, sex, estimated glomerular filtration rate (eGFR), urine pH, and radiological data on secondary signs apparent on UHCT. The uric acid stone formers had significantly lower urine pH and eGFR in comparison to calcium stone formers, and on UHCT they also had a higher percentage of the secondary signs, including rim sign (78.9% vs. 60.2%), hydroureter (94.7% vs. 89.8%), perirenal stranding (84.2% vs. 59.2%) and kidney density difference (73.7% vs. 50.0%). The radiological difference was statistically significant for perirenal stranding (p=0.041). In conclusion, we found that UHCT scanning reveals secondary signs to be more frequent in patients with uric acid ureteral stones than in patients with calcium stones, a tendency that might result from an acidic urine environment
    corecore