341 research outputs found

    Improved Antireflection Properties of an Optical Film Surface with Mixing Conical Subwavelength Structures

    Get PDF
    Based on finite difference time domain method, an optical film surface with mixing conical subwavelength structures is numerically investigated to improve antireflection property. The mixing conical subwavelength structure is combined with the pure periodic conical subwavelength structures and the added small conical structures in the gap between the pure periodic conical subwavelength structures. The antireflection properties of two types of subwavelength structures with different aspect ratios in spectral range of 400–800 nm are analyzed and compared. It is shown that, for the mixing type, the average reflectance is decreased and the variances of the reflectance are evidently smaller. When the added structure with a better aspect ratio exists, the average reflectance of the surface can be below 0.30%. Obviously, the antireflection properties of the optical film surface with mixing conical subwavelength structures can be improved

    Supervised Collective Classification for Crowdsourcing

    Full text link
    Crowdsourcing utilizes the wisdom of crowds for collective classification via information (e.g., labels of an item) provided by labelers. Current crowdsourcing algorithms are mainly unsupervised methods that are unaware of the quality of crowdsourced data. In this paper, we propose a supervised collective classification algorithm that aims to identify reliable labelers from the training data (e.g., items with known labels). The reliability (i.e., weighting factor) of each labeler is determined via a saddle point algorithm. The results on several crowdsourced data show that supervised methods can achieve better classification accuracy than unsupervised methods, and our proposed method outperforms other algorithms.Comment: to appear in IEEE Global Communications Conference (GLOBECOM) Workshop on Networking and Collaboration Issues for the Internet of Everythin

    Three-stage binarization of color document images based on discrete wavelet transform and generative adversarial networks

    Full text link
    The efficient segmentation of foreground text information from the background in degraded color document images is a hot research topic. Due to the imperfect preservation of ancient documents over a long period of time, various types of degradation, including staining, yellowing, and ink seepage, have seriously affected the results of image binarization. In this paper, a three-stage method is proposed for image enhancement and binarization of degraded color document images by using discrete wavelet transform (DWT) and generative adversarial network (GAN). In Stage-1, we use DWT and retain the LL subband images to achieve the image enhancement. In Stage-2, the original input image is split into four (Red, Green, Blue and Gray) single-channel images, each of which trains the independent adversarial networks. The trained adversarial network models are used to extract the color foreground information from the images. In Stage-3, in order to combine global and local features, the output image from Stage-2 and the original input image are used to train the independent adversarial networks for document binarization. The experimental results demonstrate that our proposed method outperforms many classical and state-of-the-art (SOTA) methods on the Document Image Binarization Contest (DIBCO) dataset. We release our implementation code at https://github.com/abcpp12383/ThreeStageBinarization

    The Relationship between Coenzyme Q10, Oxidative Stress, and Antioxidant Enzymes Activities and Coronary Artery Disease

    Get PDF
    A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10

    Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer progression is closely linked to the epithelial-mesenchymal transition (EMT) process. Studies have shown that there is increased expression of tissue tranglutaminase (TG2) in advanced invasive cancer cells. TG2 catalyzes the covalent cross-linking of proteins, exhibits G protein activity, and has been implicated in the modulation of cell adhesion, migration, invasion and cancer metastasis. This study explores the molecular mechanisms associated with TG2's involvement in the acquisition of the mesenchymal phenotype using the highly invasive A431-III subline and its parental A431-P cells.</p> <p>Results</p> <p>The A431-III tumor subline displays increased expression of TG2. This is accompanied by enhanced expression of the mesenchymal phenotype, and this expression is reversed by knockdown of endogenous TG2. Consistent with this, overexpression of TG2 in A431-P cells advanced the EMT process. Furthermore, TG2 induced the PI3K/Akt activation and GSK3β inactivation in A431 tumor cells and this increased Snail and MMP-9 expression resulting in higher cell motility. TG2 also upregulated NF-κB activity, which also enhanced Snail and MMP-9 expression resulting in greater cell motility; interestingly, this was associated with the formation of a TG2/NF-κB complex. TG2 facilitated acquisition of a mesenchymal phenotype, which was reversed by inhibitors of PI3K, GSK3 and NF-κB.</p> <p>Conclusions</p> <p>This study reveals that TG2 acts, at least in part, through activation of the PI3K/Akt and NF-κB signaling systems, which then induce the key mediators Snail and MMP-9 that facilitate the attainment of a mesenchymal phenotype. These findings support the possibility that TG2 is a promising target for cancer therapy.</p

    Deploying Image Deblurring across Mobile Devices: A Perspective of Quality and Latency

    Full text link
    Recently, image enhancement and restoration have become important applications on mobile devices, such as super-resolution and image deblurring. However, most state-of-the-art networks present extremely high computational complexity. This makes them difficult to be deployed on mobile devices with acceptable latency. Moreover, when deploying to different mobile devices, there is a large latency variation due to the difference and limitation of deep learning accelerators on mobile devices. In this paper, we conduct a search of portable network architectures for better quality-latency trade-off across mobile devices. We further present the effectiveness of widely used network optimizations for image deblurring task. This paper provides comprehensive experiments and comparisons to uncover the in-depth analysis for both latency and image quality. Through all the above works, we demonstrate the successful deployment of image deblurring application on mobile devices with the acceleration of deep learning accelerators. To the best of our knowledge, this is the first paper that addresses all the deployment issues of image deblurring task across mobile devices. This paper provides practical deployment-guidelines, and is adopted by the championship-winning team in NTIRE 2020 Image Deblurring Challenge on Smartphone Track.Comment: CVPR 2020 Workshop on New Trends in Image Restoration and Enhancement (NTIRE

    Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice

    Get PDF
    Chia-Che Tsai1, Chih-Hsien Chang1, Liang-Cheng Chen1, Ya-Jen Chang1, Keng-Li Lan2, Yu-Hsien Wu1, Chin-Wei Hsu1, I-Hsiang Liu1, Chung-Li Ho1, Wan-Chi Lee1, Hsiao-Chiang Ni1, Tsui-Jung Chang1, Gann Ting3, Te-Wei Lee11Institute of Nuclear Energy Research, Taoyuan, 2Cancer Center, Taipei Veterans General Hospital, Taipei, 3National Health Research Institutes, Taipei, Taiwan, ROCBackground: Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR) effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT) image, dosimetry, and therapeutic efficacy of 188Re-labeled nanoliposomes (188Re-liposomes) in a C26 colonic peritoneal carcinomatosis mouse model were evaluated.Methods: Colon carcinoma peritoneal metastatic BALB/c mice were intravenously administered 188Re-liposomes. Biodistribution and micro-SPECT/CT imaging were performed to determine the drug profile and targeting efficiency of 188Re-liposomes. Pharmacokinetics study was described by a noncompartmental model. The OLINDA|EXM&amp;reg; computer program was used for the dosimetry evaluation. For therapeutic efficacy, the survival, tumor, and ascites inhibition of mice after treatment with 188Re-liposomes and 5-fluorouracil (5-FU), respectively, were evaluated and compared.Results: In biodistribution, the highest uptake of 188Re-liposomes in tumor tissues (7.91% &amp;plusmn; 2.02% of the injected dose per gram of tissue [%ID/g]) and a high tumor to muscle ratio (25.8 &amp;plusmn; 6.1) were observed at 24 hours after intravenous administration. The pharmacokinetics of 188Re-liposomes showed high circulation time and high bioavailability (mean residence time [MRT] = 19.2 hours, area under the curve [AUC] = 820.4%ID/g*h). Micro-SPECT/CT imaging of 188Re-liposomes showed a high uptake and targeting in ascites, liver, spleen, and tumor. The results were correlated with images from autoradiography and biodistribution data. Dosimetry study revealed that the 188Re-liposomes did not cause high absorbed doses in normal tissue but did in small tumors. Radiotherapeutics with 188Re-liposomes provided better survival time (increased by 34.6% of life span; P &amp;lt; 0.05), tumor and ascites inhibition (decreased by 63.4% and 83.3% at 7 days after treatment; P &amp;lt; 0.05) in mice compared with chemotherapeutics of 5-fluorouracil (5-FU).Conclusion: The use of 188Re-liposomes for passively targeted tumor therapy had greater therapeutic effect than the currently clinically applied chemotherapeutics drug 5-FU in a colonic peritoneal carcinomatosis mouse model. This result suggests that 188Re-liposomes have potential benefit and are safe in treating peritoneal carcinomatasis of colon cancer.Keywords: biodistribution, dosimetry, 5-fluorouracil, micro-SPECT/CT, 188Re-liposome

    Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online)

    Get PDF
    BACKGROUND: The significant advances in microarray and proteomics analyses have resulted in an exponential increase in potential new targets and have promised to shed light on the identification of disease markers and cellular pathways. We aim to collect and decipher the HCC-related genes at the systems level. RESULTS: Here, we build an integrative platform, the Encyclopedia of Hepatocellular Carcinoma genes Online, dubbed EHCO , to systematically collect, organize and compare the pileup of unsorted HCC-related studies by using natural language processing and softbots. Among the eight gene set collections, ranging across PubMed, SAGE, microarray, and proteomics data, there are 2,906 genes in total; however, more than 77% genes are only included once, suggesting that tremendous efforts need to be exerted to characterize the relationship between HCC and these genes. Of these HCC inventories, protein binding represents the largest proportion (~25%) from Gene Ontology analysis. In fact, many differentially expressed gene sets in EHCO could form interaction networks (e.g. HBV-associated HCC network) by using available human protein-protein interaction datasets. To further highlight the potential new targets in the inferred network from EHCO, we combine comparative genomics and interactomics approaches to analyze 120 evolutionary conserved and overexpressed genes in HCC. 47 out of 120 queries can form a highly interactive network with 18 queries serving as hubs. CONCLUSION: This architectural map may represent the first step toward the attempt to decipher the hepatocarcinogenesis at the systems level. Targeting hubs and/or disruption of the network formation might reveal novel strategy for HCC treatment
    corecore