2,122 research outputs found

    Alterations in IL-6, IL-8, GM-CSF. TNF-α, and IFN-γ Release by Peripheral Mononuclear Cells in Patients with Active Vitiligo

    Get PDF
    The purpose of this study was to clarify the relationship between the cellular and humoral immune components in the pathogenesis of vitiligo vulgaris. By using cytokines as indicators of peripheral mononuclear cell (MNC) function, we compared the effects of phytohemagglutinin (PHA) and purified IgG on MNCs derived from patients suffering from active vitiligo with those from normal controls. The results revealed (i) a significant increase in spontaneous production of 11-6 and IL-8 in patients; (ii) PHA, purified IgG from patients (IgG-anti-MC), or IgG from normal controls (N-IgG) induced a significant increase in IL-6 but diminished GM-CSF, TNF-α, and IFN-γ release in patients; and (iii) IgG-anti-MC brought about a significantly higher stimulatory effect on IL-1β and IFN-γ production than N-IgG in normal controls. Immunologically, IL-6 can enhance melanocyte ICAM-1 expression, which may increase leukocyte-melanocyte attachment and cause melanocyte damage in vitiligo. A decrease in GM-CSF (an intrinsic growth factor for melanocyte) production may retard recovery from vitiligo by checking the proliferation of surviving melanocytes. A significant decrease in TNF-α and IFN-γ production may partially explain the reduced inflammatory reaction in vitiliginous lesions. That IgG-anti-MC stimulates an increase in IL-1β and IFN-γ production in controls suggests that IgG-anti-MC may play a role in melanocyte destruction mediated by monocytes

    Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate

    Get PDF
    [[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH

    Differential expression of centrosomal proteins at different stages of human glioma

    Get PDF
    BACKGROUND: High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. METHODS: A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. RESULTS: In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). CONCLUSIONS: Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

    An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum

    Get PDF
    The purpose of this study was to investigate the effect of an immunomodulatory protein (Ling Zhi-8, LZ-8) on wound healing in rat liver tissues after monopolar electrosurgery. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days postoperatively. It was found that the wound with the LZ-8 treatment significantly increases wound healing. Western blot analysis clearly indicated that the expression of NF-κB was decreased at 3, 7, and 28 days when liver tissues were treated with LZ-8. Moreover, caspase-3 activity of the liver tissue also significantly decreases at 7 and 28 days, respectively. DAPI staining and TUNEL assays revealed that only a minimal dispersion of NF-κB was found on the liver tissue treated with LZ-8 at day 7 as compared with day 3 and tissues without LZ-8 treatment. Similarly, apoptosis was decreased on liver tissues treated with LZ-8 at 7 days when compared to the control (monopolar electrosurgery) tissues. Therefore, the analytical results demonstrated that LZ-8 induced acceleration of wound healing in rat liver tissues after monopolar electrosurgery

    Staphylococcal Cassette Chromosome mec in MRSA, Taiwan

    Get PDF
    To determine the predominant staphylococcal cassette chromosome (SCC) mec element in methicillin-resistant Staphylococcus aureus, we typed 190 isolates from a hospital in Taiwan. We found a shift from type IV to type III SCCmec element during 1992–2003, perhaps caused by selective pressure from indiscriminate use of antimicrobial drugs

    3510-V 390-m Omega . cm(2) 4H-SiC Lateral JFET on a Semi-Insulating Substrate

    Get PDF
    The performance of high-voltage 4H-SiC lateral JFETs on a semi-insulating substrate is reported in this letter. The design of the voltage-supporting layers is based on the charge compensation of p- and n-type epilayers. The best measured breakdown voltage is 3510 V, which, to the authors\u27 knowledge, is the highest value ever reported for SiC lateral switching devices. The R-on of this device is 390 m Omega . cm(2), in which 61% is due to the drift-region resistance. The BV2/R-on is 32 MW/cm(2), which is typical among other reported SiC lateral devices

    Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities

    Get PDF
    To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott\u27s variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics
    corecore