418 research outputs found

    Structural Investigation of Snake Venom Proteins by Mass Spectrometry

    Get PDF
    Snake venoms are a rich and complex source of bioactive proteins and peptides. The proteomic variability of snake venoms introduces fascinating and complex investigations from a venom adaptational perspective, and the potency and specificity of these venom proteins lend promising potential for therapeutic applications. However, a significant knowledge gap exists in the proteomic and higher-order structural understanding of venom proteins, which poses a challenge for successful applications. The research in this thesis is focussed on probing ecological and structural biology questions surrounding snake venoms of medical importance from a fundamental protein structural level using mass spectrometry (MS)-based proteomics and native MS. This work contributes towards bridging the knowledge gap between venom protein structure and potential applications, and further expands knowledge of venom diversity. The venom composition of the Australian tiger snake Notechis scutatus was studied using a shotgun proteomics approach from five different geographical populations in response to the polymorphic and widespread geographical diversity exhibited by this species. Analysis of the five venom proteomes established a high degree of diversity in the various toxin groups identified in each population, and in particular, significant variations in relative abundance of 3 finger-toxins appeared to be the greatest distinction across the five venoms. Venom proteomic variations between populations may be due to a diet prey-type influence although climate, seasonal, and intrinsic variabilities must also be considered. Quaternary structures of various venom proteins from a repertoire of medically significant venoms including Collett’s snake Pseudechis colletti, the forest cobra Naja melanoleuca, and the puff adder Bitis arietans were explored for the first time. Using a combined approach of proteomics, native and denatured MS, a 117 kDa non-covalent dimer of a minor toxin component L-amino acid oxidase in the P. colletti venom and a 60 kDa tetramer of a major toxin group C-type lectin in the B. arietans venom were identified amongst other components. A targeted, higher-order structural characterisation of phospholipase A2s (PLA2) in P. colletti venom by combined native and denatured MS analyses revealed a variety of monomeric, highly modified PLA2s. Furthermore, a 27.7 kDa covalently-linked PLA2 dimer was identified in P. colletti venom for the first time by MS, and these PLA2 species were also found to adopt a highly compact and spherical geometry based on ion mobility measurements of collision cross section. Importantly, further exploration of the catalytic efficiencies of the monomeric and dimeric forms of PLA2 using a MS-based PLA2 enzyme assay revealed that dimeric PLA2 possessed substantially greater bioactivity than monomeric PLA2. This highlights the significance of quaternary structures in augmenting biological activity, and emphasises the importance of understanding higher-order protein interactions in venoms.Thesis (MPhil.) -- University of Adelaide, School of Physical Sciences, 202

    Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice

    Get PDF
    Background: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal findings: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars^{C201R/+} mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars^{C201R/+} mice to two other mutants: the TgSOD1^{G93A} model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1^{Loa}) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1^{Loa/+}; Gars^{C201R/+} double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars^{C201R} mutation significantly delayed disease onset in the SOD1^{G93A}; Gars^{C201R/+} double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains

    The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task

    Get PDF
    Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes

    Incidence of type 2 diabetes mellitus in men receiving steroid 5α-reductase inhibitors:population based cohort study

    Get PDF
    OBJECTIVE: To investigate the incidence of new onset type 2 diabetes mellitus in men receiving steroid 5α-reductase inhibitors (dutasteride or finasteride) for long term treatment of benign prostatic hyperplasia. DESIGN: Population based cohort study. SETTING: UK Clinical Practice Research Datalink (CPRD; 2003-14) and Taiwanese National Health Insurance Research Database (NHIRD; 2002-12). PARTICIPANTS: Men in the CPRD who received dutasteride (n=8231), finasteride (n=30 774), or tamsulosin (n=16 270) were evaluated. Propensity score matching (2:1; dutasteride to finasteride or tamsulosin) produced cohorts of 2090, 3445, and 4018, respectively. In the NHIRD, initial numbers were 1251 (dutasteride), 4194 (finasteride), and 86 263 (tamsulosin), reducing to 1251, 2445, and 2502, respectively, after propensity score matching. MAIN OUTCOMES MEASURE: Incident type 2 diabetes using a Cox proportional hazard model. RESULTS: In the CPRD, 2081 new onset type 2 diabetes events (368 dutasteride, 1207 finasteride, and 506 tamsulosin) were recorded during a mean follow-up time of 5.2 years (SD 3.1 years). The event rate per 10 000 person years was 76.2 (95% confidence interval 68.4 to 84.0) for dutasteride, 76.6 (72.3 to 80.9) for finasteride, and 60.3 (55.1 to 65.5) for tamsulosin. There was a modest increased risk of type 2 diabetes for dutasteride (adjusted hazard ratio 1.32, 95% confidence interval 1.08 to 1.61) and finasteride (1.26, 1.10 to 1.45) compared with tamsulosin. Results for the NHIRD were consistent with the findings for the CPRD (adjusted hazard ratio 1.34, 95% confidence interval 1.17 to 1.54 for dutasteride, and 1.49, 1.38 to 1.61 for finasteride compared with tamsulosin). Propensity score matched analyses showed similar results. CONCLUSIONS: The risk of developing new onset type 2 diabetes appears to be higher in men with benign prostatic hyperplasia exposed to 5α-reductase inhibitors than in men receiving tamsulosin, but did not differ between men receiving dutasteride and those receiving finasteride. Additional monitoring might be required for men starting these drugs, particularly in those with other risk factors for type 2 diabetes

    Does Breast Cancer Surgery Impact Functional Status and Independence in Older Patients? A Narrative Review

    Get PDF
    Surgery is the recommended treatment modality for primary breast cancer. Breast cancer surgery is non-visceral; therefore, it is often assumed that the subsequent impact on functional status in older women is less significant compared to other cancer types such as colorectal cancer. Evidence for this however, is lacking. The definition of functional status varies amongst healthcare professionals and patients, making comparisons between studies difficult. From the literature, the two most common themes in relation to functional status following breast cancer surgery are activities of daily living and quality of life. Both of these elements of functional status are adversely impacted in patients following breast cancer surgery. A more significant decline is seen in patients with pre-existing comorbidities and with greater intensity of surgery, which includes more invasive breast and/or axillary surgery as well as additional reconstructive procedures. Identifying and optimising pre-existing factors which may predict post-operative decline in functional status, such as cognitive impairment and deteriorating functional decline over the preceding year, may help in reducing deterioration in functional status after breast cancer surgery. Methods which may be employed to detect and optimise these factors include geriatric assessment and exercise intervention

    Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording

    Get PDF
    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone

    Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis : a genome-wide association study

    Get PDF
    Myasthenia gravis is a chronic autoimmune disease characterized by autoantibody-mediated interference of signal transmission across the neuromuscular junction. We performed a genome-wide association study (GWAS) involving 1,873 patients diagnosed with acetylcholine receptor antibody-positive myasthenia gravis and 36,370 healthy individuals to identify disease-associated genetic risk loci. Replication of the discovered loci was attempted in an independent cohort from the UK Biobank. We also performed a transcriptome-wide association study (TWAS) using expression data from skeletal muscle, whole blood, and tibial nerve to test the effects of disease-associated polymorphisms on gene expression. We discovered two signals in the genes encoding acetylcholine receptor subunits that are the most common antigenic target of the autoantibodies: a GWAS signal within the cholinergic receptor nicotinic alpha 1 subunit (CHRNA1) gene and a TWAS association with the cholinergic receptor nicotinic beta 1 subunit (CHRNB1) gene in normal skeletal muscle. Two other loci were discovered on 10p14 and 11q21, and the previous association signals at PTPN22, HLA-DQA1/HLA-B, and TNFRSF11A were confirmed. Subgroup analyses demonstrate that early-and late-onset cases have different genetic risk factors. Genetic correlation analysis confirmed a genetic link between myasthenia gravis and other autoimmune diseases, such as hypothyroidism, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes. Finally, we applied Priority Index analysis to identify potentially druggable genes/proteins and pathways. This study provides insight into the genetic architecture underlying myasthenia gravis and demonstrates that genetic factors within the loci encoding acetylcholine receptor subunits contribute to its pathogenesis.Peer reviewe

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Hannu Laaksovirta konsortion jäsenenä.IMPORTANCE Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. OBJECTIVE To identify the genetic variants associated with juvenile ALS. DESIGN, SETTING, AND PARTICIPANTS In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. MAIN OUTCOMES AND MEASURES De novo variants present only in the index case and not in unaffected family members. RESULTS Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p. Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. CONCLUSIONS AND RELEVANCE These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.Peer reviewe
    • …
    corecore