6 research outputs found

    Multi-material additive manufacture and microwave-assisted sintering of a metal/ceramic metamaterial antenna structure

    Get PDF
    Multi-material metal/ceramic 3D structures comprising of metallic silver and ultra-low sintering temperature silver molybdenum oxide ceramics, have been additively manufactured and hybrid densified using microwave-assisted sintering for the first time. Optimum densification conditions at 440 °C / 1 h, resulted in relative permittivity, εr = 10.99 ± 0.04, dielectric losses, tanδ = 0.005 ± 0.001 and microwave quality factor, Q × f = 2597 ± 540 GHz. Applying 2 kW microwave energy at 2.45 GHz for 60 min, was proven sufficient, to densify the metallic Ag infilling electrodes, without causing any macroscopic defects. A fully functional multi-layered antenna structure with a metamaterial artificial magnetic conductor was designed, dual-printed and densified, to showcase the potential of combining multi-material additive manufacturing with microwave-assisted sintering

    Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout

    Get PDF
    Additive manufacturing (AM) of co-fired low temperature ceramics offers a unique route for fabrication of novel 3D radio frequency (RF) and microwave communication components, embedded electronics and sensors. This paper describes the first-ever direct 3D printing of low temperature co-fired ceramics/floating electrode 3D structures. Slurry-based AM and selective laser burnout (SLB) were used to fabricate bulk dielectric, Bi2Mo2O9 (BMO, sintering temperature = 620–650°C, εr = 38) with silver (Ag) internal floating electrodes. A printable BMO slurry was developed and the SLB optimised to improve edge definition and burn out the binder without damaging the ceramic. The SLB increased the green strength needed for shape retention, produced crack-free parts and prevented Ag leaching into the ceramic during co-firing. The green parts were sintered after SLB in a conventional furnace at 645°C for 4 h and achieved 94.5% density, compressive strength of 4097 MPa, a relative permittivity (εr) of 33.8 and a loss tangent (tan δ) of 0.0004 (8 GHz) for BMO. The feasibility of using SLB followed by a post-printing sintering step to create BMO/Ag 3D structures was thus demonstrated

    Direct ink writing of bismuth molybdate microwave dielectric ceramics

    No full text
    Additive manufacturing via direct ink writing and microwave dielectric characterisation of commercially produced low sintering temperature bismuth molybdenum oxide ceramics, have been both performed for the first time, following a powder-to-product holistic approach. We demonstrated that direct ink writing is an excellent candidate for producing dielectric substrates to be used for wireless telecommunication applications operating at microwave (MW) frequencies, with great repeatability and properties comparable to ceramics fabricated via conventional processing routes. The optimum density (relative density of ρr ≈ 93%) of the 3D printed test samples was obtained by sintering at 660 °C for 2 h, resulting in a relative permittivity εr = 35.7, dielectric loss tanδ = 0.0004 and microwave quality factor Q × f = 14,928 GHz. Sintering at higher temperatures promoted a porosity increase due to mismatching grain growth mechanisms and phase decomposition, that collectively hindered the test samples’ microwave dielectric performance in terms of achievable relative permittivity (εr) and dielectric loss (tanδ)

    Additively manufactured ultra-low sintering temperature, low loss Ag2Mo2O7 ceramic substrates

    Get PDF
    Ultra-low sintering temperature silver molybdenum oxide (Ag2Mo2O7) ceramics have been printed using direct ink writing (a material extrusion additive manufacturing process) for the first time. An optimum densification conditions of 460 °C / 2 h was determined, resulting in relative permittivity, εr = 13.45, dielectric loss, tanδ = 0.0005, microwave quality factor, Q × f = 17,056 GHz and the temperature coefficient of resonant frequency τf = −121 ppm/°C. The results were comparable to the dielectric properties of conventionally fabricated ceramics. A series of metal/ceramic antenna designs were produced via dual-printing and co-firing, to demonstrate the potential of Ag2Mo2O7, to be used as a co-firable dielectric material for functional integrated circuits and/or microwave RF devices through multi-material direct ink writing
    corecore