803 research outputs found

    A Probability Model for Analysis of Attacks on Blockchain

    Get PDF
    In a blockchain, the longest chain, which has the greatest proof-of-work effort spent in it, represents the majority decision. To change the transaction data of a block, an attacker has to control more computing power than other honest nodes. This situation can happen if the attacker can hack into the systems of honest nodes. To analyze the probability of such event, we propose a probability model for analysis of attacks on blockchain. The model is based on the structure of a peer-to-peer network. We assume the state of each honest node follows a two-state (hacked or normal) Markov chains. A hacked node is assumed to be controlled by the attacker and its computing power belongs to the attacker. On the other hand, the computing power of a normal node belongs to the honest longest chain. We apply the model to study the probability of the majority decision is controlled by the attacker and the duration of such event. In addition, we analyze the magnitude of the loss for such event

    Optimal Outsourcing Strategy: a Stochastic Optimization Approach

    Get PDF
    As the production capacity of a company over a certain period of time is limited, enterprises must carefully consider product line development or outsourcing options. Unlike traditional studies that use static or comparative static analyses to determine optimal production strategies, this paper proposes a stochastic optimization model that can be used to determine optimum quantities of multiphase development or outsourcing. The proposed model can be used as a decision framework for future production allocation in high-tech industries that face uncertain demands. It can also be used as a financial projection tool

    Dual residence time for droplet to coalesce with liquid surface

    Full text link
    When droplets approach a liquid surface, they have a tendency to merge in order to minimize surface energy. However, under certain conditions, they can exhibit a phenomenon called coalescence delay, where they remain separate for tens of milliseconds. This duration is known as the residence time or the non-coalescence time. Surprisingly, under identical parameters and initial conditions, the residence time for water droplets is not a constant value but exhibits dual peaks in its distribution. In this paper, we present the observation of the dual residence times through rigorous statistical analysis and investigate the quantitative variations in residence time by manipulating parameters such as droplet height, radius, and viscosity. Theoretical models and physical arguments are provided to explain their effects, particularly why a large viscosity or/and a small radius is detrimental to the appearance of the longer residence time peak.Comment: 7 pages, 6 figure

    Characterizing First Arrival Position Channels: Noise Distribution and Capacity Analysis

    Full text link
    This paper addresses two fundamental problems in diffusive molecular communication: characterizing the first arrival position (FAP) density and bounding the information transmission capacity of FAP channels. Previous studies on FAP channel models, mostly captured by the density function of noise, have been limited to specific spatial dimensions, drift directions, and receiver geometries. In response, we propose a unified solution for identifying the FAP density in molecular communication systems with fully-absorbing receivers. Leveraging stochastic analysis tools, we derive a concise expression with universal applicability, covering any spatial dimension, drift direction, and receiver shape. We demonstrate that several existing FAP density formulas are special cases of this innovative expression. Concurrently, we establish explicit upper and lower bounds on the capacity of three-dimensional, vertically-drifted FAP channels, drawing inspiration from vector Gaussian interference channels. In the course of deriving these bounds, we unravel an explicit analytical expression for the characteristic function of vertically-drifted FAP noise distributions, providing a more compact characterization compared to the density function. Notably, this expression sheds light on a previously undiscovered weak stability property intrinsic to vertically-drifted FAP noise distributions.Comment: 30 pages; 3 figures, 1 table; this paper is submitted to IEEE Transactions on Communication

    The Influence of Type 2 Diabetes and Glucose-Lowering Therapies on Cancer Risk in the Taiwanese

    Get PDF
    Objective. To investigate the association between type 2 diabetes, glucose-lowering therapies (monotherapy with either metformin, sulphonylurea or insulin) and cancer risk in Taiwan. Methods. Using Taiwan's National Health Research Institutes database of 1,000,000 random subjects from 2000–2008, we found 61777 patients with type 2 diabetes (age ≥20 years) and 677378 enrollees with no record of diabetes. Results. After adjusting for age and sex, we found patients with diabetes to have significantly higher risk of all cancers (OR: 1.176; 95% CI: 1.149–1.204, P < 0.001). Diabetic patients treated with insulin or sulfonylureas had significantly higher risk of all cancers, compared to those treated with metformin (OR: 1.583; 95% CI: 1.389–1.805, P < 0.001 and OR: 1.784; 95% CI: 1.406–2.262, P < 0.001). Metformin treatment was associated with a decreased risk of colon and liver cancer compared to sulphonylureas or insulin treatment. Sulfonylureas treatment was associated with an increased risk of breast and lung cancer compared to metformin therapy. Conclusions. Taiwanese with type 2 diabetes are at a high risk of breast, prostate, colon, lung, liver and pancreatic cancer. Those treated with insulin or sulfonylureas monotherapy are more likely to develop colon and liver cancer than those treated with metformin

    Crystallization of Adenylylsulfate Reductase from Desulfovibrio gigas: A Strategy Based on Controlled Protein Oligomerization

    Get PDF
    Adenylylsulfate reductase (adenosine 5′-phosphosulfate reductase, APS reductase or APSR, E.C.1.8.99.2) catalyzes the conversion of APS to sulfite in dissimilatory sulfate reduction. APSR was isolated and purified directly from massive anaerobically grown Desulfovibrio gigas, a strict anaerobe, for structure and function investigation. Oligomerization of APSR to form dimers–α_2β_2, tetramers–α_4β_4, hexamers–α_6β_6, and larger oligomers was observed during purification of the protein. Dynamic light scattering and ultracentrifugation revealed that the addition of adenosine monophosphate (AMP) or adenosine 5′-phosphosulfate (APS) disrupts the oligomerization, indicating that AMP or APS binding to the APSR dissociates the inactive hexamers into functional dimers. Treatment of APSR with β-mercaptoethanol decreased the enzyme size from a hexamer to a dimer, probably by disrupting the disulfide Cys156—Cys162 toward the C-terminus of the β-subunit. Alignment of the APSR sequences from D. gigas and A. fulgidus revealed the largest differences in this region of the β-subunit, with the D. gigas APSR containing 16 additional amino acids with the Cys156—Cys162 disulfide. Studies in a pH gradient showed that the diameter of the APSR decreased progressively with acidic pH. To crystallize the APSR for structure determination, we optimized conditions to generate a homogeneous and stable form of APSR by combining dynamic light scattering, ultracentrifugation, and electron paramagnetic resonance methods to analyze the various oligomeric states of the enzyme in varied environments

    Pathophysiology of Neuropathic Pain in Type 2 Diabetes: Skin denervation and contact heat–evoked potentials

    Get PDF
    OBJECTIVE: Neuropathic pain due to small-fiber sensory neuropathy in type 2 diabetes can be diagnosed by skin biopsy with quantification of intra- epidermal nerve fiber ( IENF) density. There is, however, a lack of noninvasive physiological assessment. Contact heat-evoked potential ( CHEP ) is a newly developed approach to record cerebral responses of A fiber- mediated thermonociceptive stimuli. We investigated the diagnostic role of CHEP. RESEARCH DESIGN AND METHODS: From 2006 to 2009, there were 32 type 2 diabetic patients (20 males and 12 females, aged 51.63 10.93 years) with skin denervation and neuropathic pain. CHEPs were recorded with heat stimulations at the distal leg, where skin biopsy was performed. RESULTS: CHEP amplitude was reduced in patients compared with age- and sex-matched control subjects (14.8 15.6 vs. 33.7 10.1 V, P < 0.001). Abnormal CHEP patterns ( reduced amplitude or prolonged latency) were noted in 81.3 % of these patients. The CHEP amplitude was the most significant parameter correlated with IENF density (P = 0. 003) and pain perception to contact heat stimuli (P = 0.019) on multiple linear regression models. An excitability index was derived by calculating the ratio of the CHEP amplitude over the IENF density. This excitability index was higher in diabetic patients than in control subjects (P = 0.023), indicating enhanced brain activities in neuropathic pain. Among different neuropathic pain symptoms, the subgroup with evoked pain had higher CHEP amplitudes than the subgroup without evoked pain (P = 0.011). CONCLUSIONS: CHEP offers a noninvasive approach to evaluate the degeneration of thermonociceptive nerves in diabetic neuropathy by providing physiological correlates of skin denervation and neuropathic pain

    Downstream Impact Investigation of Released Sediment from Reservoir Desilting Operation

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    A General Phase Matching Condition for Quantum Searching Algorithm

    Full text link
    A general consideration on the phase rotations in quantum searching algorithm is taken in this work. As four phase rotations on the initial state, the marked states, and the states orthogonal to them are taken account, we deduce a phase matching condition for a successful search. The optimal options for these phase are obtained consequently.Comment: 3 pages, 3 figure
    corecore