149 research outputs found

    Roles of sulfate-reducing bacteria in sustaining the diversity and stability of marine bacterial community

    Get PDF
    Microbes play central roles in ocean food webs and global biogeochemical processes. Yet, the information available regarding the highly diverse bacterial communities in these systems is not comprehensive. Here we investigated the diversity, assembly process, and species coexistence frequency of bacterial communities in seawater and sediment across ∼600 km of the eastern Chinese marginal seas using 16S rRNA gene amplicon sequencing. Our analyses showed that compared with seawater, bacterial communities in sediment possessed higher diversity and experienced tight phylogenetic distribution. Neutral model analysis showed that the relative contribution of stochastic processes to the assembly process of bacterial communities in sediment was lower than that in seawater. Functional prediction results showed that sulfate-reducing bacteria (SRB) were enriched in the core bacterial sub-communities. The bacterial diversities of both sediment and seawater were positively associated with the relative abundance of SRB. Co-occurrence analysis showed that bacteria in seawater exhibited a more complex interaction network and closer co-occurrence relationships than those in sediment. The SRB of seawater were centrally located in the network and played an essential role in sustaining the complex network. In addition, further analysis indicated that the SRB of seawater helped maintain the high stability of the bacterial network. Overall, this study provided further comprehensive information regarding the characteristics of bacterial communities in the ocean, and provides new insights into keystone taxa and their roles in sustaining microbial diversity and stability in ocean

    Neutralization sites of human papillomavirus-6 relate to virus attachment and entry phase in viral infection.

    Get PDF
    Human papillomavirus type 6 (HPV6) is the major etiologic agent of genital warts and recurrent respiratory papillomatosis. Although the commercial HPV vaccines cover HPV6, the neutralization sites and mode for HPV6 are poorly understood. Here, we identify the HPV6 neutralization sites and discriminate the inhibition of virus attachment and entry by three potent neutralizing antibodies (nAbs), 5D3, 17D5, and 15F7. Mutagenesis assays showed that these nAbs predominantly target surface loops BC, DE, and FG of HPV6 L1. Cryo-EM structures of the HPV6 pseudovirus (PsV) and its immune complexes revealed three distinct binding modalities - full-occupation-bound to capsid, top-center-bound-, and top-rim-bound to pentamers - and illustrated a structural atlas for three classes of antibody-bound footprints that are located at center-distal ring, center, and center-proximal ring of pentamer surface for 5D3, 17D5, and 15F7, respectively. Two modes of neutralization were identified: mAb 5D3 and 17D5 block HPV PsV from attaching to the extracellular matrix (ECM) and the cell surface, whereas 15F7 allows PsV attachment but prohibits PsV from entering the cell. These findings highlight three neutralization sites of HPV6 L1 and outline two antibody-mediated neutralization mechanisms against HPV6, which will be relevant for HPV virology and antiviral inhibitor design. HighlightsMajor neutralization sites of HPV6 were mapped on the pseudovirus cryo-EM structuremAb 15F7 binds HPV6 capsid with a novel top-rim binding modality and confers a post-attachment neutralizationmAb 17D5 binds capsid in top-centre manner but unexpectedly prevents virus from attachment to cell surface

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases
    corecore