202 research outputs found

    Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium

    Get PDF
    Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrate the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display an electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights into long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients

    Impact of adjuvant gemcitabine containing chemotherapy following radical nephroureterectomy for patients with upper tract urothelial carcinoma: Results from a propensity-score matched cohort study

    Get PDF
    BACKGROUND: The evidence regarding perioperative adjuvant chemotherapy and personalized surveillance strategies for upper tract urothelial carcinoma is limited. OBJECTIVE: To evaluate whether adjuvant gemcitabine containing chemotherapy affects the oncological outcomes of advanced upper tract urothelial carcinoma (UTUC). METHODS: The CROES-UTUC registry is an observational, international, multi-center study on patients diagnosed with UTUC. Patient and disease characteristics from 2380 patients with UTUC were collected, and finally 738 patients were included in this analysis. The primary outcome of this study was recurrence-free survival. Propensity score matching was performed. Kaplan-Meier and multivariate Cox regression analyses were performed by stratifying patients according to the treatment of adjuvant chemotherapy. RESULTS: A total of 738 patients were included in this analysis, and 59 patients received adjuvant chemotherapy (AC), including 50 patients who received gemcitabine. A propensity score matching was performed, including 50 patients who received gemcitabine containing treatment and 50 patients without adjuvant chemotherapy. Disease recurrence occurred in 34.0% of patients. The recurrence rate in the AC group was 22.0%, which was significantly lower than the non-AC group (46.0%). Kaplan-Meier analyses also showed that AC was associated with a lower likelihood of tumor recurrence (p = 0.047). However, AC was not significantly associated with a higher overall survival (OS) (p = 0.908) and cancer-specific survival (CSS) (p = 0.979). Upon multivariate Cox regression analysis, AC was associated with a lower risk of tumor recurrence (HR = 0.297, p = 0.028). CONCLUSION: The present study confirms that adjuvant gemcitabine containing chemotherapy could decrease the risk of tumor recurrence in patients with locally advanced UTUC following nephroureterectomy. However, more studies are need to draw a clearer image of the value of this treatment method.STORZ to the Clinical Research Office of the Endourology Society (CROES

    Effects of systemic pretreatment with the NAALADase inhibitor 2-PMPA on oral methamphetamine reinforcement in C57BL/6J mice

    Get PDF
    IntroductionRepeated exposure to methamphetamine (MA) in laboratory rodents induces a sensitization of glutamate release within the corticoaccumbens pathway that drives both the rewarding and reinforcing properties of this highly addictive drug. Such findings argue the potential for pharmaceutical agents inhibiting glutamate release or its postsynaptic actions at glutamate receptors as treatment strategies for MA use disorder. One compound that may accomplish both of these pharmacological actions is the N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA). 2-PMPA elevates brain levels of the endogenous agonist of glutamate mGluR3 autoreceptors, N-acetyl-aspartatylglutamate (NAAG), while potentially acting as an NMDA glutamate receptor antagonist. Of relevance to treating psychomotor stimulant use disorders, 2-PMPA is reported to reduce indices of both cocaine and synthetic cathinone reward, as well as cocaine reinforcement in preclinical rodent studies.MethodHerein, we conducted three experiments to pilot the effects of systemic pretreatment with 2-PMPA (0-100 mg/kg, IP) on oral MA self-administration in C57BL/6J mice. The first experiment employed female mice with a prolonged history of MA exposure, while the mice in the second (females) and third (males and females) experiment were MA-naïve prior to study. In all experiments, mice were trained daily to nose-poke for delivery of unadulterated MA solutions until responding stabilized. Then, mice were pretreated with 2-PMPA prior to operant-conditioning sessions in which nose-poking behavior was reinforced by delivery of 120 mg/L or 200 mg/L MA (respectively, in Experiments 1 and 2/3).ResultsContrary to our expectations, 30 mg/kg 2-PMPA pretreatment altered neither appetitive nor consummatory measures related to MA self-administration. In Experiment 3, 100 mg/kg 2-PMPA reduced responding in the MA-reinforced hole, as well as the number of reinforcers earned, but did not significantly lower drug intake.DiscussionThese results provide mixed evidenced related to the efficacy of this NAALADase inhibitor for reducing oral MA reinforcement in female mice

    Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

    Get PDF
    Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genomewide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit– hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety)

    Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing

    Get PDF
    We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2–L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively.MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situatedventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervatingflexors (e.g., posterior crural muscles) are more medial than those belonging to extensors ofthe same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases

    Transcriptional Regulation of Human Dual Specificity Protein Phosphatase 1 (DUSP1) Gene by Glucocorticoids

    Get PDF
    Background: Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR), which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs) to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1) gene. Methodology/Principal Findings: We found that glucocorticoids rapidly increased transcription of DUSP1 within 10 minutes in A549 human lung adenocarcinoma cells. Using chromatin immunoprecipitation (ChIP) scanning, we located a GR binding region between 21421 and 21118 upstream of the DUSP1 transcription start site. This region is active in a reporter system, and mutagenesis analyses identified a functional GRE located between 21337 and 21323. We found that glucocorticoids increased DNase I hypersensitivity, reduced nucleosome density, and increased histone H3 and H4 acetylation within genomic regions surrounding the GRE. ChIP experiments showed that p300 was recruited to the DUSP1 GRE, and RNA interference experiments demonstrated that reduction of p300 decreased glucocorticoid-stimulated DUSP1 gene expression and histone H3 hyperacetylation. Furthermore, overexpression of p300 potentiated glucocorticoid-stimulated activity of a reporter gene containing the DUSP1 GRE, and this coactivation effect was compromised when the histone acetyltransferase domain was mutated. ChIP-reChIP experiments using GR followed by p300 antibodies showed significant enrichment of the DUSP1 GRE upon glucocorticoid treatment, suggesting that GR and p300 are in the same protein complex recruited to the DUSP1 GRE. Conclusions/Significance: Our studies identified a functional GRE for the DUSP1 gene. Moreover, the transcriptional activation of DUSP1 by glucocorticoids requires p300 and a rapid modification of the chromatin structure surrounding the GRE. Overall, understanding the mechanism of glucocorticoid-induced DUSP1 gene transcription could provide insights into therapeutic approaches against inflammatory diseases. © 2010 Shipp et al

    Insulin Dose and Cardiovascular Mortality in the ACCORD Trial

    Get PDF
    In the ACCORD trial, intensive treatment of patients with type 2 diabetes and high cardiovascular (CV) risk was associated with higher all-cause and CV mortality. Post hoc analyses have failed to implicate rapid reduction of glucose, hypoglycemia, or specific drugs as the causes of this finding. We hypothesized that exposure to injected insulin was quantitatively associated with increased CV mortality

    Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Get PDF
    Background: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90 + liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90 + cells sorted from tumor (CD90 +CSCs) with parallel non-tumorous liver tissues (CD90 +NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings: CD90 + cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90 + cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90 +CSCs and CD90 +NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90 +CSCs and CD90 +NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90 +CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90 +CSCs compared to CD90 +NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90 +CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90 +CSCs in liver tumor tissues. Conclusions/Significance: The identified genes, such as GPC3 that are distinctly expressed in liver CD90 +CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. © 2012 Ho et al.published_or_final_versio

    A Concerted HIF-1α/MT1-MMP Signalling Axis Regulates the Expression of the 3BP2 Adaptor Protein in Hypoxic Mesenchymal Stromal Cells

    Get PDF
    Increased plasticity, migratory and immunosuppressive abilities characterize mesenchymal stromal cells (MSC) which enable them to be active participants in the development of hypoxic solid tumours. Our understanding of the oncogenic adaptation of MSC to hypoxia however lacks the identification and characterization of specific biomarkers. In this study, we assessed the hypoxic regulation of 3BP2/SH3BP2 (Abl SH3-binding protein 2), an immune response adaptor/scaffold protein which regulates leukocyte differentiation and motility. Gene silencing of 3BP2 abrogated MSC migration in response to hypoxic cues and generation of MSC stably expressing the transcription factor hypoxia inducible factor 1alpha (HIF-1α) resulted in increased endogenous 3BP2 expression as well as cell migration. Analysis of the 3BP2 promoter sequence revealed only one potential HIF-1α binding site within the human but none in the murine sequence. An alternate early signalling cascade that regulated 3BP2 expression was found to involve membrane type-1 matrix metalloproteinase (MT1-MMP) transcriptional regulation which gene silencing abrogated 3BP2 expression in response to hypoxia. Collectively, we provide evidence for a concerted HIF-1α/MT1-MMP signalling axis that explains the induction of adaptor protein 3BP2 and which may link protein binding partners together and stimulate oncogenic MSC migration. These mechanistic observations support the potential for malignant transformation of MSC within hypoxic tumour stroma and may contribute to evasion of the immune system by a tumour
    • …
    corecore