45 research outputs found

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aβ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aβ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aβ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aβ and tau

    Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    Get PDF
    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.open6

    Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease

    Get PDF
    Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aβ compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic β-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials

    Population Genetics of Streptococcus dysgalactiae Subspecies equisimilis Reveals Widely Dispersed Clones and Extensive Recombination

    Get PDF
    Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epidemiology and evolutionary relationships, multilocus sequence typing (MLST) analysis was performed on SDSE isolates collected from Australia, Europe and North America.The 178 SDSE isolates, representing 37 emm types, segregate into 80 distinct sequence types (STs) that form 17 clonal complexes (CCs). Eight STs recovered from all three continents account for >50% of the isolates. Thus, a small number of STs are highly prevalent and have a wide geographic distribution. Both ST and CC strongly correlate with group carbohydrate. In contrast, eleven STs were associated with >1 emm type, suggestive of recombinational replacements involving the emm gene; furthermore, 35% of the emm types are associated with genetically distant STs. Data also reveal a history of extensive inter- and intra-species recombination involving the housekeeping genes used for MLST. Sequence analysis of single locus variants identified through goeBURST indicates that genetic change mediated by recombination occurred approximately 4.4 times more frequently than by point mutation.A few genetic lineages with an intercontinental distribution dominate among SDSE causing infections in humans. The distinction between group C and G isolates reflects recent evolution, and no long-term genetic isolation between them was found. Lateral gene transfer and recombination involving housekeeping genes and the emm gene are important mechanisms driving genetic variability in the SDSE population

    The Interaction of Canine Plasminogen with Streptococcus pyogenes Enolase: They Bind to One Another but What Is the Nature of the Structures Involved?

    Get PDF
    For years it has been clear that plasminogen from different sources and enolase from different sources interact strongly. What is less clear is the nature of the structures required for them to interact. This work examines the interaction between canine plasminogen (dPgn) and Streptococcus pyogenes enolase (Str enolase) using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), fluorescence polarization, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and simple pull-down reactions. Overall, our data indicate that a non-native structure of the octameric Str enolase (monomers or multimers) is an important determinant of its surface-mediated interaction with host plasminogen. Interestingly, a non-native structure of plasminogen is capable of interacting with native enolase. As far as we can tell, the native structures resist forming stable mixed complexes

    Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study

    Get PDF
    BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10^{–2} [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10^{–3} [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing

    α2-Macroglobulin can crosslink multiple plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes

    Get PDF
    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens

    Molecular analysis of the bvg-repressed urease of Bordetella bronchiseptica

    No full text
    Bordetella bronchiseptica is a ureolytic mammalian respiratory pathogen. We have investigated the regulation of urease in B. bronchiseptica and the potential role of this enzyme in eukaryotic invasion and intracellular survival. Our results indicate urease is a bordetella virulence repressed gene. Urease activity in virulent B. bronchiseptica BB7865 is up-regulated from basal levels by 5g l(-1) magnesium sulphate at 37 degrees C. At 30 degrees C, urease activity remained at basal levels, even in the presence on magnesium sulphate, suggesting a second temperature dependent mechanism of urease regulation was also operating. Urease was not inducible by 10 mM urea nor up-regulated in nitrogen limiting conditions. To evaluate the role of urease in intracellular invasion and survival urease-negative mutants of B. bronchiseptica BB7865 and B. bronchiseptica BB7866 were created by transposon mutagenesis, and compared to the urease-positive parental strains in a HeLa cell invasion assay. We demonstrate that increasing the concentration of urea in the assay increased survival of the urease-positive but not urease-negative strains after 24 h, suggesting that urease does have a role in intracellular survival. Partial DNA sequence analysis of an 11.0 kb EcoRI DNA fragment encoding urease activity revealed an open reading frame containing 50%, 45%, 45% and 41% homology to the UreA urease subunit protein of Klebsiella aerogenes, Proteus vulgaris, Helicobacter pylori and Proteus mirabilis respectively. We also show Bordetella pertussis to contain sequences homologous with a DNA probe containing the gene encoding UreA of B. bronchiseptica indicating the possible presence of cryptic urease genes in this species. (C) 1996 Academic Press Limite

    Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif

    No full text
    SpsA, a pneumococcal surface protein belonging to the family of choline-binding proteins, interacts specifically with secretory immunglobulin A (SIgA) via the secretory component (SC). SIgA and free SC from mouse, rat, rabbit and guinea-pig failed to interact with SpsA indicating species-specific binding to human SIgA and SC. SpsA is the only pneumococcal receptor molecule for SIgA and SC as confirmed by complete loss of SIgA and SC binding to a spsA mutant. Analysis of recombinant SpsA fusion proteins showed that the binding domain is located in the N-terminal region of SpsA. By the use of different truncated N-terminal SpsA fusion proteins, the minimum binding domain was shown to be composed of 112 amino acids (residues 172-283). The sequence of this 112-amino-acids domain was used to spot synthesize 34 overlapping peptides, consisting of 15 amino acids each, with an offset of three amino acids on a cellulose membrane. One of the peptides reacted specifically with both SIgA and SC. By using a second membrane with immobilized synthetic peptides of decreasing length containing parts of the identified 15-amino-acid motif a hexapeptide, YRNYPT was identified as the binding motif for SC and SIgA. SpsA proteins with a size smaller than the assay-positive domain of 112 amino acids were able to inhibit the interaction of SIgA and pneumococci provided they contained the binding motif. The results indicated that the hexapeptide YRNYPT located in SpsA of pneumococcal strain type 1 (ATCC 33400) between amino acids 198 and 203 is involved in SIgA and SC binding. Because synthetic peptides containing only parts of the hexapeptide also assayed positive, these results further suggest that at least the amino acids YPT of the identified hexapeptide are critical for binding to SC and SIgA. Amino acid substitutions in the identified putative binding motif abolished SC-/SIgA-binding activity of the mutated SpsA protein, confirming the functional activity of this hexapeptide and the critical role of the amino acids YPT in SC and SIgA binding. Identification of this motif, which is highly conserved in SpsA protein among different serotypes, might contribute towards a new peptide based vaccine strategy

    Contribution of protein G-related alpha(2)-macroglobulin-binding protein to bacterial virulence in a mouse skin model of group a streptococcal infection

    No full text
    Protein G-related alpha(2)-macroglobulin-binding (GRAB) protein is a cell wall-attached determinant of group A streptococcus (GAS) that interacts with the human protease inhibitor a 2-macroglobulin (alpha(2)-M). Of 86 clinical isolates tested, 23% could bind a alpha(2)-M. However, all strains tested contained the grab gene. High levels of anti-GRAB antibodies were found in the serum of convalescent GAS-infected patients, a finding that indicates that this protein is expressed during the infection process. Among the alpha(2)-M-binding strains, 80% were skin isolates, and 20% were throat isolates, findings that suggest that the skin environment is a preferential site for expression of alpha(2)-M-binding activity. To test this possibility, we determined the role of GRAB in a mouse model of GAS skin infection. The wild-type strain KTL3, which interacts with alpha(2)-M, showed high virulence. The isogenic mutant of KTL3, MR4, devoid of surface-bound GRAB, was attenuated in virulence, compared with the wildtype strain. Thus, mice infected with MR4 survived longer, developed smaller skin lesions, and exhibited lower levels of bacterial dissemination than did those infected with KTL3. These results emphasize the role of GRAB as a virulence factor of GAS
    corecore