1,117 research outputs found

    Maternal Neonatal Outcome in Relation to Placental Location, Dimensions in Early Pregnancy

    Get PDF
    Background: Placenta, which is the vital link between mother and fetus, is critical for maternal neonatal well-being. Its study in early pregnancy may provide information about maternal neonatal disorders.Aim: The study aimed to evaluate the relationship of placental location and dimensions in early pregnancy with maternal neonatal outcomes.Subjects and Methods: Primigravida (801) with singleton pregnancy at 10-weeks gestation and no past/present medical and obstetric disorder had ultrasonography for placental location and dimensions and were followed by ultrasonographic (USG) examination (at 20th week and 30th week), clinically for maternal-neonatal outcome. Statistical analysis was done by Epi 6 software (version 6.0, developed by Centres for Disease Control and Prevention, Atlanta, Georgia, USA) using Chi-square test and Fischer exact test for determining the statistical significance of the observations. P values of < 0.05 were considered as significant.Results: The number of primigravida with hypertensive disorders were 2.5% (5/200) with anterior, 20.5% (66/322) with fundal, and with posterior placenta 9.8% (12/123); Placental abruption 2.5% (5/200) with anterior, 6.8% (22/322) with fundal, and 3.3% (4/123) with posterior. With placental surface area <41 cm2 19.0% (37/195), with area 41-55 cm2 7.2% (30/416), and with area >55 cm2 6.8% (13/190), had hypertensive disorders. area < 41 cm2 11.3% (22/195), area 41-55 cm2 5.0% (21/416), and area >55 cm2 3.7% (7/190) had placental abruption. With thick placenta, 39.2% (58/148), thin, 9.4% (9/96), and normal placenta, 5.2% (29/562) had hypertensive disorders. With thick, 11.5% (17/148), thin 16.7% (16/96), and normal placenta 2.7% (15/562) had placental abruption. With anterior 0.5% (1/200), posterior 14.6% (18/123), fundal placenta 10.55% had preterm births. With anterior 7.5% (15/200), posterior 23.6% (29/123), fundal placenta 18% (58/322) had CS.With placental surface area <41 cm2 28.7% (56/195), area 41-55 cm2 14.2% (58/406), with > 55 cm2 14% (28/200) had CS. With thin 27% (25/91), with thick 36.1% (53/148), with normal placenta none had CS for fetal distress.Conclusions: Study of placental location and dimensions in early pregnancy is useful in identifying risks.  Keywords: Dimensions, early pregnancy, location, maternal-neonatal outcome, placent

    Multifractal Scaling, Geometrical Diversity, and Hierarchical Structure in the Cool Interstellar Medium

    Get PDF
    Multifractal scaling (MFS) refers to structures that can be described as a collection of interwoven fractal subsets which exhibit power-law spatial scaling behavior with a range of scaling exponents (concentration, or singularity, strengths) and dimensions. The existence of MFS implies an underlying multiplicative (or hierarchical, or cascade) process. Panoramic column density images of several nearby star- forming cloud complexes, constructed from IRAS data and justified in an appendix, are shown to exhibit such multifractal scaling, which we interpret as indirect but quantitative evidence for nested hierarchical structure. The relation between the dimensions of the subsets and their concentration strengths (the "multifractal spectrum'') appears to satisfactorily order the observed regions in terms of the mixture of geometries present: strong point-like concentrations, line- like filaments or fronts, and space-filling diffuse structures. This multifractal spectrum is a global property of the regions studied, and does not rely on any operational definition of "clouds.'' The range of forms of the multifractal spectrum among the regions studied implies that the column density structures do not form a universality class, in contrast to indications for velocity and passive scalar fields in incompressible turbulence, providing another indication that the physics of highly compressible interstellar gas dynamics differs fundamentally from incompressible turbulence. (Abstract truncated)Comment: 27 pages, (LaTeX), 13 figures, 1 table, submitted to Astrophysical Journa

    Flow induced by a sphere settling in an aging yield-stress fluid

    Full text link
    We have studied the flow induced by a macroscopic spherical particle settling in a Laponite suspension that exhibits a yield-stress, thixotropy and shear-thinning. We show that the fluid thixotropy (or aging) induces an increase with time of both the apparent yield stress and shear-thinning properties but also a breaking of the flow fore-aft symmetry predicted in Hershel-Bulkley fluids (yield-stress, shear-thinning fluids with no thixotropy). We have also varied the stress exerted by the particles on the fluid by using particles of different densities. Although the stresses exerted by the particles are of the same order of magnitude, the velocity field presents utterly different features: whereas the flow around the lighter particle shows a confinement similar to the one observed in shear-thinning fluids, the wake of the heavier particle is characterized by an upward motion of the fluid ("negative wake"), whatever the fluid's age. We compare the features of this negative wake to the one observed in viscoelastic shear-thinning fluids (polymeric or micelle solutions). Although the flows around the two particles strongly differ, their settling behaviors display no apparent difference which constitutes an intriguing result and evidences the complexity of the dependence of the drag factor on flow field

    Evaluation of Direct Rapid Immunohistochemistry Test (DRIT) for Postmortem Diagnosis of Rabies

    Get PDF
    Direct fluorescent antibody test (DFAT) is considered as the gold standard for diagnosis of rabies in infected mammals as it has high sensitivity and specificity. However, high cost and technical demand limits its utilization, particularly in developing countries including India. Therefore, in this study we evaluated recently developed direct rapid immunohistochemistry test (DRIT) for diagnosis of rabies in comparison with the DFAT. A total of 109 brain samples received during the period of 6 years from different regions of India were tested following standard protocol. The results showed 100% correlation between the two tests.

    Multifractality of the quantum Hall wave functions in higher Landau levels

    Full text link
    To probe the universality class of the quantum Hall system at the metal-insulator critical point, the multifractality of the wave function ψ\psi is studied for higher Landau levels, N=1,2N=1,2, for various range (σ)(\sigma ) of random potential. We have found that, while the multifractal spectrum f(α)f(\alpha) (and consequently the fractal dimension) does vary with NN, the parabolic form for f(α)f(\alpha) indicative of a log-normal distribution of ψ\psi persists in higher Landau levels. If we relate the multifractality with the scaling of localization via the conformal theory, an asymptotic recovery of the single-parameter scaling with increasing σ\sigma is seen, in agreement with Huckestein's irrelevant scaling field argument.Comment: 10 pages, revtex, 5 figures available on request from [email protected]

    A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    Get PDF
    Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lung cancer. We show that the GHRP495T variant located in the receptor intracellular domain is able to prolong the GH signal in vitro using stably expressing mouse pro-B-cell and human lung cell lines. This is relevant because GH secretion is pulsatile, and extending the signal duration makes it resemble autocrine GH action. Signal duration for the activated GHR is primarily controlled by suppressor of cytokine signalling 2 (SOCS2), the substrate recognition component of the E3 protein ligase responsible for ubiquitinylation and degradation of the GHR. SOCS2 is induced by a GH pulse and we show that SOCS2 binding to the GHR is impaired by a threonine substitution at Pro 495. This results in decreased internalisation and degradation of the receptor evident in TIRF microscopy and by measurement of mature (surface) receptor expression. Mutational analysis showed that the residue at position 495 impairs SOCS2 binding only when a threonine is present, consistent with interference with the adjacent Thr494. The latter is key for SOCS2 binding, together with nearby Tyr487, which must be phosphorylated for SOCS2 binding. We also undertook nuclear magnetic resonance spectroscopy approach for structural comparison of the SOCS2 binding scaffold Ile455-Ser588, and concluded that this single substitution has altered the structure of the SOCS2 binding site. Importantly, we find that lung BEAS-2B cells expressing GHRP495T display increased expression of transcripts associated with tumour proliferation, epithelial–mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer

    Improving Phase Change Memory Performance with Data Content Aware Access

    Full text link
    A prominent characteristic of write operation in Phase-Change Memory (PCM) is that its latency and energy are sensitive to the data to be written as well as the content that is overwritten. We observe that overwriting unknown memory content can incur significantly higher latency and energy compared to overwriting known all-zeros or all-ones content. This is because all-zeros or all-ones content is overwritten by programming the PCM cells only in one direction, i.e., using either SET or RESET operations, not both. In this paper, we propose data content aware PCM writes (DATACON), a new mechanism that reduces the latency and energy of PCM writes by redirecting these requests to overwrite memory locations containing all-zeros or all-ones. DATACON operates in three steps. First, it estimates how much a PCM write access would benefit from overwriting known content (e.g., all-zeros, or all-ones) by comprehensively considering the number of set bits in the data to be written, and the energy-latency trade-offs for SET and RESET operations in PCM. Second, it translates the write address to a physical address within memory that contains the best type of content to overwrite, and records this translation in a table for future accesses. We exploit data access locality in workloads to minimize the address translation overhead. Third, it re-initializes unused memory locations with known all-zeros or all-ones content in a manner that does not interfere with regular read and write accesses. DATACON overwrites unknown content only when it is absolutely necessary to do so. We evaluate DATACON with workloads from state-of-the-art machine learning applications, SPEC CPU2017, and NAS Parallel Benchmarks. Results demonstrate that DATACON significantly improves system performance and memory system energy consumption compared to the best of performance-oriented state-of-the-art techniques.Comment: 18 pages, 21 figures, accepted at ACM SIGPLAN International Symposium on Memory Management (ISMM

    Correlation Exponent and Anomalously Localized States at the Critical Point of the Anderson Transition

    Full text link
    We study the box-measure correlation function of quantum states at the Anderson transition point with taking care of anomalously localized states (ALS). By eliminating ALS from the ensemble of critical wavefunctions, we confirm, for the first time, the scaling relation z(q)=d+2tau(q)-tau(2q) for a wide range of q, where q is the order of box-measure moments and z(q) and tau(q) are the correlation and the mass exponents, respectively. The influence of ALS to the calculation of z(q) is also discussed.Comment: 6 pages, 3 figure
    corecore