15 research outputs found

    Modulation of the β-Catenin Signaling Pathway by the Dishevelled-Associated Protein Hipk1

    Get PDF
    BACKGROUND:Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY:We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS:These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation

    Acute exacerbation of irritable bowel syndrome prevented by prn oral triptan

    No full text
    We report a case of irritable bowel syndrome (IBS), diarrhea subtype, characterized by daily 'morning rush' and episodic acute exacerbations brought on by common IBS trigger foods including insoluble fiber, red wine and large/rich meals. The patient also had a history of migraine headaches, and a family history suggesting a common diathesis for both disorders. Given hypothesized contributions to IBS from dysregulation of the enteric serotonergic system, a trial of low-dose triptan medication was implemented in the context of the patient's known IBS triggers, with highly satisfactory results

    Schematic representation of <i>ATP1A3</i> mutations.

    No full text
    <p>Mutations identified in our cohort are indicated above the gene; all the mutations previously published are indicated in black; novel mutations are indicated in light blue; mutations identified in multiplex cases are underlined; mutations reported in DYT12 are indicated in green; the mutation reported in CAPOS syndrome is indicated in red. The mutation associated with a phenotype combining features of both AHC and RDP is in orange. The 2 most common mutations are in bold. Asterisks mean that 2 different nucleotide changes have been identified for these protein variants.</p
    corecore