9,049 research outputs found

    Influence of the r-mode instability on hypercritically accreting neutron stars

    Get PDF
    We have investigated an influence of the r-mode instability on hypercritically accreting (M˙∌1M⊙y−1\dot{M}\sim 1M_\odot {y}^{-1}) neutron stars in close binary systems during their common envelope phases based on the scenario proposed by Bethe et al. \shortcite{bethe-brown-lee}. On the one hand neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency. The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning-up of the star, whose final rotational frequency is well below the mass-shedding limit, typically as small as 10% of that of the mass-shedding state. On a very short time scale the rotational frequency tends to approach a certain constant value and saturates there as far as the amount of the accreted mass does not exceed a certain limit to collapse to a black hole. This implies that the similar mechanism of gravitational radiation as the so-called Wagoner star may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by the gravitational wave detectors such as LIGO II.Comment: 6 pages, 3 figure

    X-Ray Spectroscopy of the Low-Mass X-ray Binaries 2S 0918-549 and 4U1543-624: Evidence for Neon-Rich Degenerate Donors

    Full text link
    We present high-resolution spectroscopy of the neutron-star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory and the Reflection Grating Spectrometer onboard XMM-Newton. Previous low-resolution spectra of both sources showed a broad line-like feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra spectra. The Chandra spectra are each well fit by an absorbed power-law + blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar-medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fit by an absorbed power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.Comment: 11 pages, 5 figures, major revisions including addition of XMM spectral analysis, accepted for publication in the Astrophysical Journal, vol. 59

    X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries

    Full text link
    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four systems in which we had previously inferred an unusual Ne/O ratio in the absorption along the line of sight, most likely from material local to the binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U 1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously measured and consistent with the expected interstellar value. We propose that variations in the Ne/O ratio due to source variability, as previously observed in these sources, can explain the difference between the low- and high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS observation of 4U 0513-40 also shows no unusual abundance ratios in the absorption along the line of sight. We also present spectral results from a third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by an absorbed power-law + blackbody model with absorption consistent with the expected interstellar value. Finally, we present the non-detection of a fourth candidate ultracompact binary, 4U 1905+000, with an upper limit on the source luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical Journa

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    Gamma-Ray Burster Counterparts: HST Blue and Ultraviolet Data

    Get PDF
    The surest solution of the Gamma Ray Burst (GRB) mystery is to find an unambiguous low-energy quiescent counterpart. However, to date no reasonable candidates have been identified in the x-ray, optical, infrared, or radio ranges. The Hubble Space Telescope (HST) has now allowed for the first deep ultraviolet searches for quiescent counterparts. This paper reports on multiepoch ultraviolet searches of five GRB positions with HST. We found no sources with significant ultraviolet excesses, variability, parallax, or proper motion in any of the burst error regions. In particular, we see no sources similar to that proposed as a counterpart to the GRB970228. While this negative result is disappointing, it still has good utility for its strict limits on the no-host-galaxy problem in cosmological models of GRBs. For most cosmological models (with peak luminosity 6X10^50 erg/s), the absolute B magnitude of any possible host galaxy must be fainter than -15.5 to -17.4. These smallest boxes for some of the brightest bursts provide the most critical test, and our limits are a severe problem for all published cosmological burst models.Comment: 15 pages, 2 ps figures, accepted for publication in the Astrophysical Journa

    The effects of spin-down on the structure and evolution of pulsar wind nebulae

    Get PDF
    We present high resolution spherically symmetric relativistic magnetohydrodynamical simulations of the evolution of a pulsar wind nebula inside the free expanding ejecta of the supernova progenitor. The evolution is followed starting from a few years after the supernova explosion and up to an age of the remnant of 1500 years. We consider different values of the pulsar wind magnetization parameter and also different braking indices for the spin-down process. We compare the numerical results with those derived through an approximate semi-analytical approach that allows us to trace the time evolution of the positions of both the pulsar wind termination shock and the contact discontinuity between the nebula and the supernova ejecta. We also discuss, whenever a comparison is possible, to what extent our numerical results agree with former self-similar models, and how these models could be adapted to take into account the temporal evolution of the system. The inferred magnetization of the pulsar wind could be an order of magnitude lower than that derived from time independent analytic models.Comment: 11 pages, 7 figures, Accepted for publication on A&

    Naturalistic rapid deceleration data: Drivers aged 75 years and older.

    Full text link
    The data presented in this article are related to the research manuscript "Predictors of older drivers' involvement in rapid deceleration events", which investigates potential predictors of older drivers' involvement in rapid deceleration events including measures of vision, cognitive function and driving confidence (A. Chevalier et al., 2016) [1]. In naturalistic driving studies such as this, when sample size is not large enough to allow crashes to be used to investigate driver safety, rapid deceleration events may be used as a surrogate safety measure. Naturalistic driving data were collected for up to 52 weeks from 182 volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Accelerometer data were recorded 32 times per second and Global Positioning System (GPS) data each second. To measure rapid deceleration behavior, rapid deceleration events (RDEs) were defined as having at least one data point at or above the deceleration threshold of 750 milli-g (7.35 m/s2). All events were constrained to a maximum 5 s duration. The dataset provided with this article contains 473 events, with a row per RDE. This article also contains information about data processing, treatment and quality control. The methods and data presented here may assist with planning and analysis of future studies into rapid deceleration behaviour using in-vehicle monitoring

    Coronal X-Ray Emission from the Stellar Companions to Transiently Accreting Black Holes

    Get PDF
    Observations of soft X-ray transients (SXTs) in quiescence have found that the binaries harboring black holes are fainter than those that contain a neutron star. Narayan and collaborators postulated that the faint X-ray emission from black hole binaries was powered by an advection dominated accretion flow (ADAF). We explore an alternative explanation for the quiescent X-ray emission from the black hole systems: coronal emission from the rapidly rotating optical companion. This is commonly observed and well studied in other tidally locked binaries, such as the RS CVns. We show that two of the three X-ray detected black hole binaries (A0620-00 and GRO J1655-40) exhibit X-ray fluxes entirely consistent with coronal emission. The X-ray spectra of these objects should be best fit with thermal Raymond-Smith models rich in lines when coronal emission predominates. One black hole system (V404 Cyg) is too X-ray bright to be explained as coronal emission. The quiescent X-ray emission from the neutron star binaries is far too bright for coronal emission. It might be that all SXT's have variable accretion rates in quiescence and that the basal quiescent X-ray flux is set by either coronal emission from the companion or -- when present -- by thermal emission from the neutron star. We also show that the lithium abundances in the black hole systems are comparable to those in the RS CVns, reducing the need for production mechanisms that involve the compact object.Comment: ApJ, accepted (v541; Oct 1, 2000); Changes to figures and tables, minor modifications to text. Uses emulateapj.sty. 14 pages, 3 figure
    • 

    corecore