14,876 research outputs found
Higgs Bosons: Intermediate Mass Range at e+e- Colliders
We elaborate on the production of the Standard Model Higgs particle at
high-energy colliders through the reaction .
Particular emphasis is put on the intermediate mass range. In addition to the
signal we discuss in detail the background processes. Angular distributions
which are sensitive to the spin and parity of the Higgs particle are analyzed.Comment: Standard Latex. 15 pages. 11 figures available by fax or regular
mail. MAD/PH/749, DESY 93-064, UdeM-LPN-TH-93-143, NUHEP-TH-93-1
Characteristic Potentials for Mesoscopic Rings Threaded by an Aharonov-Bohm Flux
Electro-static potentials for samples with the topology of a ring and
penetrated by an Aharonov-Bohm flux are discussed. The sensitivity of the
electron-density distribution to small variations in the flux generates an
effective electro-static potential which is itself a periodic function of flux.
We investigate a simple model in which the flux sensitive potential leads to a
persistent current which is enhanced compared to that of a loop of
non-interacting electrons. For sample geometries with contacts the sensitivity
of the electro-static potential to flux leads to a flux-induced capacitance.
This capacitance gives the variation in charge due to an increment in flux. The
flux-induced capacitance is contrasted with the electro-chemical capacitance
which gives the variation in charge due to an increment in an electro-chemical
potential. The discussion is formulated in terms of characteristic functions
which give the variation of the electro-static potential in the interior of the
conductor due to an increment in the external control parameters (flux,
electro-chemical potentials). Paper submitted to the 16th Nordic Semiconductor
Meeting, Laugarvatan, Iceland, June 12-15, 1994. The proceedings will be
published in Physica Scripta.Comment: 23 pages + 4 figures, revtex, IBM-RC1955
NLO-QCD corrections to e+ e- --> hadrons in models of TeV-scale gravity
We present results on NLO-QCD corrections to the process e+ e- --> hadrons
via photon-, Z- and graviton-exchange in the context of TeV-scale gravity
models. The quantitative impact of these QCD corrections for searches of extra
dimensions at a Linear Collider is briefly discussed.Comment: 10 pages, LaTeX, using axodraw.st
Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers
Electron transport in GaAs/AlGaAs quantum cascade lasers operating in midinfrared is calculated self-consistently using an intersubband scattering model. Subband populations and carrier transition rates are calculated and all relevant electron-LO phonon and electron-electron scatterings between injector/collector, active region, and continuum resonance levels are included. The calculated carrier lifetimes and subband populations are then used to evaluate scattering current densities, injection efficiencies, and carrier backflow into the active region for a range of operating temperatures. From the calculated modal gain versus total current density dependencies the output characteristics, in particular the gain coefficient and threshold current, are extracted. For the original GaAs/Al0.33Ga0.67As quantum cascade structure [C. Sirtori , Appl. Phys. Lett. 73, 3486 (1998)] these are found to be g=11.3 cm/kA and J(th)=6+/-1 kA/cm(2) (at T=77 K), and g=7.9 cm/kA and J(th)=10+/-1 kA/cm(2) (at T=200 K), in good agreement with the experiment. Calculations shows that threshold cannot be achieved in this structure at T=300 K, due to the small gain coefficient and the gain saturation effect, also in agreement with experimental findings. The model thus promises to be a powerful tool for the prediction and optimization of new, improved quantum cascade structures. © 2002 American Institute of Physics
Deep Adaptive Temporal Pooling for Activity Recognition
Deep neural networks have recently achieved competitive accuracy for human activity recognition. However, there is room for improvement, especially in modeling of long-term temporal importance and determining the activity relevance of different temporal segments in a video. To address this problem, we propose a learnable and differentiable module: Deep Adaptive Temporal Pooling (DATP). DATP applies a self-attention mechanism to adaptively pool the classification scores of different video segments. Specifically, using frame-level features, DATP regresses importance of different temporal segments, and generates weights for them. Remarkably, DATP is trained using only the video-level label. There is no need of additional supervision except video-level activity class label. We conduct extensive experiments to investigate various input features and different weight models. Experimental results show that DATP can learn to assign large weights to key video segments. More importantly, DATP can improve training of frame-level feature extractor. This is because relevant temporal segments are assigned large weights during back-propagation. Overall, we achieve state-of-the-art performance on UCF101, HMDB51 and Kinetics datasets
Perturbative QCD Fragmentation Functions for Production of P-wave Mesons with Charm and Beauty
We calculate the leading order QCD fragmentation functions for the production
of -wave charmed beauty mesons. Long-distance effects are factored into two
nonperturbative parameters: the derivative of the radial wavefunction at the
origin and a second parameter related to the probability for a
heavy quark pair that is produced in a color-octet -wave state to form a
color-singlet -wave bound state. The four states and those states
which lie below the flavor threshold eventually all decay into the
ground state through hadronic cascades or by emitting photons. The total
fragmentation probabilities for production of the ground state from
the cascades of the and states are about and
respectively. Thus the direct production of the -wave
states via fragmentation may account for a significant fraction of the
inclusive production rate of the at large transverse momentum in high
energy colliders. Our analytic results for the -wave fragmentation functions
disagree with those obtained earlier in the literature.Comment: 31 pages, Latex file, 1 figure (postscript file appended at the end
Nuclear magnetic resonance probes for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact devices
We propose a probe based on nuclear relaxation and Knight shift measurements
for the Kondo scenario for the "0.7 feature" in semiconductor quantum point
contact (QPC) devices. We show that the presence of a bound electron in the QPC
would lead to a much higher rate of nuclear relaxation compared to nuclear
relaxation through exchange of spin with conduction electrons. Furthermore, we
show that the temperature dependence of this nuclear relaxation is very
non-monotonic as opposed to the linear-T relaxation from coupling with
conduction electrons. We present a qualitative analysis for the additional
relaxation due to nuclear spin diffusion (NSD) and study the extent to which
NSD affects the range of validity of our method. The conclusion is that nuclear
relaxation, in combination with Knight shift measurements, can be used to
verify whether the 0.7 feature is indeed due to the presence of a bound
electron in the QPC.Comment: Published version. Appears in a Special Section on the 0.7 Feature
and Interactions in One-Dimensional Systems. 16 page
Re-parameterization Invariance in Fractional Flux Periodicity
We analyze a common feature of a nontrivial fractional flux periodicity in
two-dimensional systems. We demonstrate that an addition of fractional flux can
be absorbed into re-parameterization of quantum numbers. For an exact
fractional periodicity, all the electronic states undergo the
re-parameterization, whereas for an approximate periodicity valid in a large
system, only the states near the Fermi level are involved in the
re-parameterization.Comment: 4 pages, 1 figure, minor changes, final version to appear in J. Phys.
Soc. Jp
The consistency condition for the three-point function in dissipative single-clock inflation
We generalize the consistency condition for the three-point function in
single field inflation to the case of dissipative, multi-field, single-clock
models. We use the recently introduced extension of the effective field theory
of inflation that accounts for dissipative effects, to provide an explicit
proof to leading (non-trivial) order in the generalized slow roll parameters
and mixing with gravity scales. Our results illustrate the conditions necessary
for the validity of the consistency relation in situations with many degrees of
freedom relevant during inflation, namely that there is a preferred clock.
Departures from this condition in forthcoming experiments would rule out not
only single field but also a large class of multi-field models.Comment: 26+11 page
Persistent Currents in Quantum Chaotic Systems
The persistent current of ballistic chaotic billiards is considered with the
help of the Gutzwiller trace formula. We derive the semiclassical formula of a
typical persistent current for a single billiard and an average
persistent current for an ensemble of billiards at finite temperature.
These formulas are used to show that the persistent current for chaotic
billiards is much smaller than that for integrable ones. The persistent
currents in the ballistic regime therefore become an experimental tool to
search for the quantum signature of classical chaotic and regular dynamics.Comment: 4 pages (RevTex), to appear in Phys. Rev. B, No.59, 12256-12259
(1999
- âŠ