88 research outputs found

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    "It's just horrible": a qualitative study of patients' and carers' experiences of bowel dysfunction in Multiple Sclerosis

    Get PDF
    Background: Around 50% of people with multiple sclerosis (MS) experience neurogenic bowel dysfunction (constipation and / or faecal incontinence), reducing quality of life and increasing carer burden. No previous qualitative studies have explored the experiences of bowel problems in people with MS, or the views of their family carers. Objective: To understand 'what it is like' to live with bowel dysfunction and the impact this has on people with MS and carers. Methods: Using exploratory qualitative methods, 47 semi-structured interviews were conducted with participants recruited from specialist hospital clinics and community sources using purposive and chain-referral sampling. Data were analysed using a pragmatic inductive-deductive method. Results: Participants identified multiple psychological, physical and social impacts of bowel dysfunction. Health care professional support ranged from empathy and appropriate onward referral, to lack of interest or not referring to appropriate services. Participants want bowel issues to be discussed more openly, with clinicians instigating a discussion early after MS diagnosis and repeating enquiries regularly. Conclusions: Bowel dysfunction impacts on the lives of people with MS and their carers; their experience with care services is often unsatisfactory. Understanding patient and carer preferences about management of bowel dysfunction can inform clinical care and referral pathways

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis

    Long-Term Impact of Malaria Chemoprophylaxis on Cognitive Abilities and Educational Attainment: Follow-Up of a Controlled Trial

    Get PDF
    OBJECTIVES: We investigated the long-term impact of early childhood malaria prophylaxis on cognitive and educational outcomes. DESIGN: This was a household-based cluster-controlled intervention trial. SETTING: The study was conducted in 15 villages situated between 32 km to the east and 22 km to the west of the town of Farafenni, the Gambia, on the north bank of the River Gambia. PARTICIPANTS: A total of 1,190 children aged 3–59 mo took part in the trial. We traced 579 trial participants (291 in the prophylaxis group and 288 in the placebo group) in 2001, when their median age was 17 y 1 mo (range 14 y 9 mo to 19 y 6 mo). INTERVENTIONS: Participants received malaria chemoprophylaxis (dapsone/pyrimethamine) or placebo for between one and three malaria transmission seasons from 1985 to 1987 during the controlled trial. At the end of the trial, prophylaxis was provided for all children under 5 y of age living in the study villages. OUTCOME MEASURES: The outcome measures were cognitive abilities, school enrolment, and educational attainment (highest grade reached at school). RESULTS: There was no significant overall intervention effect on cognitive abilities, but there was a significant interaction between intervention group and the duration of post-trial prophylaxis (p = 0.034), with cognitive ability somewhat higher in the intervention group among children who received no post-trial prophylaxis (treatment effect = 0.2 standard deviations [SD], 95% confidence interval [CI] −0.03 to 0.5) and among children who received less than 1 y of post-trial prophylaxis (treatment effect = 0.4 SD, 95% CI 0.1 to 0.8). The intervention group had higher educational attainment by 0.52 grades (95% CI = −0.041 to 1.089; p = 0.069). School enrolment was similar in the two groups. CONCLUSIONS: The results are suggestive of a long-term effect of malaria prophylaxis on cognitive function and educational attainment, but confirmatory studies are needed

    Electron Transfer Function versus Oxygen Delivery: A Comparative Study for Several Hexacoordinated Globins Across the Animal Kingdom

    Get PDF
    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O2 and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O2 as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O2 actually binding to the iron atom, since the heme is oxidized by O2 faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins

    Feedback Inhibition in the PhoQ/PhoP Signaling System by a Membrane Peptide

    Get PDF
    The PhoQ/PhoP signaling system responds to low magnesium and the presence of certain cationic antimicrobial peptides. It regulates genes important for growth under these conditions, as well as additional genes important for virulence in many gram-negative pathogens. PhoQ is a sensor kinase that phosphorylates and activates the transcription factor PhoP. Since feedback inhibition is a common theme in stress-response circuits, we hypothesized that some members of the PhoP regulon may play such a role in the PhoQ/PhoP pathway. We therefore screened for PhoP-regulated genes that mediate feedback in this system. We found that deletion of mgrB (yobG), which encodes a 47 amino acid peptide, results in a potent increase in PhoP-regulated transcription. In addition, over-expression of mgrB decreased transcription at both high and low concentrations of magnesium. Localization and bacterial two-hybrid studies suggest that MgrB resides in the inner-membrane and interacts directly with PhoQ. We further show that MgrB homologs from Salmonella typhimurium and Yersinia pestis also repress PhoP-regulated transcription in these organisms. In cell regulatory circuits, feedback has been associated with modulating the induction kinetics and/or the cell-to-cell variability in response to stimulus. Interestingly, we found that elimination of MgrB-mediated feedback did not have a significant effect on the kinetics of reporter protein production and did not decrease the variability in expression among cells. Our results indicate MgrB is a broadly conserved membrane peptide that is a critical mediator of negative feedback in the PhoQ/PhoP circuit. This new regulator may function as a point of control that integrates additional input signals to modulate the activity of this important signaling system

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help

    The psychometric properties of the subscales of the GHQ-28 in a multi-ethnic maternal sample: results from the Born in Bradford cohort

    Get PDF
    Background: Poor maternal mental health can impact on children’s development and wellbeing; however, there is concern about the comparability of screening instruments administered to women of diverse ethnic origin. Methods: We used confirmatory factor analysis (CFA) and exploratory factor analysis (EFA) to examine the subscale structure of the GHQ-28 in an ethnically diverse community cohort of pregnant women in the UK (N = 5,089). We defined five groups according to ethnicity and language of administration, and also conducted a CFA between four groups of 1,095 women who completed the GHQ-28 both during and after pregnancy. Results: After item reduction, 17 of the 28 items were considered to relate to the same four underlying concepts in each group; however, there was variation in the response to individual items by women of different ethnic origin and this rendered between group comparisons problematic. The EFA revealed that these measurement difficulties might be related to variation in the underlying concepts being measured by the factors. Conclusions: We found little evidence to recommend the use of the GHQ-28 subscales in routine clinical or epidemiological assessment of maternal women in populations of diverse ethnicity
    corecore