797 research outputs found

    Physiotherapists’ perception of a community-based primary healthcare clinical education approach to undergraduate learning

    Get PDF
    Background. South African health systems are challenged by numerous stressors, such as a lack of resources, staff shortages and overburdened public sector demands. This necessitates appropriately equipped and trained healthcare professionals to meet the demands of this system. Community-based primary healthcare (PHC) clinical education is an approach towards preparing health science students to meet these demands. Clinical education is the cornerstone of undergraduate training. Physiotherapists are among the healthcare professionals who require undergraduate training that drives competence for independent practice.Objective. To explore the perceptions and experiences of physiotherapists as clinical supervisors within a physiotherapy undergraduate programme that adopted a community-based PHC approach to clinical training.Methods. An explorative qualitative approach was used, with semi-structured interviews with 10 purposively selected physiotherapists supervising students on the newly introduced platform. Data were transcribed and analysed using content analysis.Results. Seven themes emerged from the data, which relate to curriculum redress, organisational factors, stakeholder dynamics, barriers and enablers to decentralised clinical training, perceived preparedness for practice and recommendations.Conclusions. As the need for an increasing number of health professionals is realised, more innovative methods for clinical education of undergraduate health science students are required. Community-based PHC training for physiotherapy students is one such approach and was generally perceived as a valuable framework to incorporate competencies required for practice as future independent practitioners. Furthermore, improved communication between students, clinicians and academic staff was seen as a recommendation to influence clinical education

    Satisfaction and adherence of patients with amputations to physiotherapy service at public hospitals in KwaZulu-Natal, South Africa

    Get PDF
    Background: Individuals who have undergone a lower limb amputation require comprehensive rehabilitation from the multidisciplinary team to ensure optimal treatment outcomes and social integration. Physiotherapists play a pivotal role within the multidisciplinary team and offer patients physical and psychosocial rehabilitative care. Determining patients’ satisfaction levels and exploring factors affecting adherence to physiotherapy interventions can inform practice and improve service delivery of rehabilitation within resource poor settings such as South Africa.Objectives: To determine the level of satisfaction with physiotherapy services rendered to acute and sub-acute in-patients with lower limb amputations and to explore factors affecting adherence to physiotherapy intervention.Methods: A prospective survey of 35 patients with lower limb amputations from four public hospitals in South Africa was undertaken. A modified version of the Hampstead rehabilitation centre patient satisfaction questionnaire was utilised.Results: Majority of participants were satisfied with the physiotherapy services whilst a few reported dissatisfaction. Three themes emerged whilst exploring the patients’ experience relating to adherence to physiotherapy programmes. Themes included service delivery, patient-therapist interaction and participation barriers and facilitators.Conclusion: Recommendations aimed to improve quality of care and healthcare outcomes thereby enhancing the participants’ adherence to the physiotherapy programme.Keywords: amputation, patient satisfaction, patient adherence, physiotherapy

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    The influence of surface stress on the equilibrium shape of strained quantum dots

    Full text link
    The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied using a hybrid approach which combines density functional theory (DFT) calculations of microscopic parameters, surface energies, and surface stresses with elasticity theory for the long-range strain fields and strain relaxations. In particular we report DFT calculations of the surface stresses and analyze the influence of the strain on the surface energies of the various facets of the quantum dot. The surface stresses have been neglected in previous studies. Furthermore, the influence of edge energies on the island shapes is briefly discussed. From the knowledge of the equilibrium shape of these islands, we address the question whether experimentally observed quantum dots correspond to thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Competition between Magnetic and Structural Transition in CrN

    Full text link
    CrN is observed to undergo a paramagnetic to antiferromagnetic transition accompanied by a shear distortion from cubic NaCl-type to orthorhombic structure. Our first-principle plane wave and ultrasoft pseudopotential calculations confirm that the distorted antiferromagnetic phase with spin configuration arranged in double ferromagnetic sheets along [110] is the most stable. Antiferromagnetic ordering leads to a large depletion of states around Fermi level, but it does not open a gap. Simultaneous occurence of structural distortion and antiferromagnetic order is analyzed.Comment: 10 pages, 10 figure

    Efficient Small Extracellular Vesicles (EV) Isolation Method and Evaluation of EV-Associated DNA Role in Cell-Cell Communication in Cancer

    Get PDF
    SIMPLE SUMMARY: Small extracellular vesicles (sEVs) released by all cell types function as a mediator in intercellular communication that can promote cell division and survival to remodel the tumor microenvironment to develop tumor invasion and metastasis. Even though dsDNA baggage is associated with all small EV populations, the functional role of EV-DNA in cancer remains poorly understood. This is due to a lack of methods allowing the efficient separation of small EVs (sEVs) from other non-sEV components. The main aim of our study was to develop an efficient sEV isolation method along with EV-associated DNA (EV-DNA) monitoring tool to evaluate the role of EV-DNA as a mediator of cell–cell communication in cancer. Our detailed small EV-DNA characterization confirmed that isolated sEVs using the TSU method (Tangential flow filtration + Size exclusion chromatography + Ultrafiltration) are free from contaminants such as cell-free and apoptotic bodies DNA, making TSU ideal for performing EV-DNA functional studies. Next, we revealed the exact EV-DNA distribution in the recipient cells using 3D image analysis and the association of EV-DNA with key cellular proteins, which may have an essential role in cancer. In the leukemia model, EV-DNA isolated from leukemia cell lines associated with mesenchymal stromal cells (MSCs), a crucial factor in the bone marrow (BM) microenvironment. ABSTRACT: Small extracellular vesicles (sEVs) play essential roles in intercellular signaling both in normal and pathophysiological conditions. Comprehensive studies of dsDNA associated with sEVs are hampered by a lack of methods, allowing efficient separation of sEVs from free-circulating DNA and apoptotic bodies. In this work, using controlled culture conditions, we enriched the reproducible separation of sEVs from free-circulated components by combining tangential flow filtration, size-exclusion chromatography, and ultrafiltration (TSU). EV-enriched fractions (F2 and F3) obtained using TSU also contained more dsDNA derived from the host genome and mitochondria, predominantly localized inside the vesicles. Three-dimensional reconstruction of high-resolution imaging showed that the recipient cell membrane barrier restricts a portion of EV-DNA. Simultaneously, the remaining EV-DNA overcomes it and enters the cytoplasm and nucleus. In the cytoplasm, EV-DNA associates with dsDNA-inflammatory sensors (cGAS/STING) and endosomal proteins (Rab5/Rab7). Relevant to cancer, we found that EV-DNA isolated from leukemia cell lines communicates with mesenchymal stromal cells (MSCs), a critical component in the BM microenvironment. Furthermore, we illustrated the arrangement of sEVs and EV-DNA at a single vesicle level using super-resolution microscopy. Altogether, employing TSU isolation, we demonstrated EV-DNA distribution and a tool to evaluate the exact EV-DNA role of cell–cell communication in cancer

    Sweet sorghum: food, feed, fodder and fuel crop

    Get PDF
    This book contains the following chapters: Energy needs and feed stocks, sweet sorghum, comparative advantages of sweet sorghum, how does the farmer benefit?, sweet sorghum research at ICRISAT, technology sharing, Agri-Business Incubator (ABI), ABI support to M/s Rusni Distilleries Pvt Ltd, product profile of M/s Rusni Distilleries Pvt Ltd, sweet sorghum-based ethanol production

    Au/TiO2(110) interfacial reconstruction stability from ab initio

    Full text link
    We determine the stability and properties of interfaces of low-index Au surfaces adhered to TiO2(110), using density functional theory energy density calculations. We consider Au(100) and Au(111) epitaxies on rutile TiO2(110) surface, as observed in experiments. For each epitaxy, we consider several different interfaces: Au(111)//TiO2(110) and Au(100)//TiO2(110), with and without bridging oxygen, Au(111) on 1x2 added-row TiO2(110) reconstruction, and Au(111) on a proposed 1x2 TiO reconstruction. The density functional theory energy density method computes the energy changes on each of the atoms while forming the interface, and evaluates the work of adhesion to determine the equilibrium interfacial structure.Comment: 20 pages, 11 figure
    • …
    corecore