15 research outputs found

    From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    Get PDF
    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of unoptimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    N2O plasma treatment for minimization of background plating in silicon solar cells with Ni–Cu front side metallization

    No full text
    In this paper we demonstrate that an additional nitrous oxide (N2O) plasma treatment step after the regular SiNx:H anti-reflective coating (ARC) deposition practically eliminates background plating during Ni-Cu contact metallization for c-Si solar cells. This step is relatively simple and could henceforth enable the commercialization of plated Ni-Cu contacts, which is currently inhibited by the creation of localized metal-silicon interfaces due to background plating, among other issues like adhesion. The average active area efficiency and fill-factor of reference cells without any plasma treatment are 17.4% and 73.5%, respectively. N2O plasma treatment before ARC deposition leads to an improved average fill-factor of 75.0%. This improvement is attributed to a reduction in the area affected by background plating by approximately 40% due to the formation of a thin silicon oxy-nitride layer. N2O plasma treatment after ARC deposition is even more effective and can overcome background plating with an average active area cell efficiency and fill-factor of 18.5% and 77.5%, respectively. This performance improvement is attributed to oxidation of the ARC surface by the plasma post-treatment. Analysis of background plating losses is complemented by current-voltage curve fits to a 3-diode model with resistance limited recombination, performed by the freely available program "2/3-Diode Fit". (C) 2015 Elsevier B.V. All rights reserved

    Genomewide Scan for Nonsyndromic Cleft Lip and Palate in Multigenerational Indian Families Reveals Significant Evidence of Linkage at 13q33.1-34

    Get PDF
    Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used ∼10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (α=100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of ∼20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families
    corecore