89 research outputs found

    Euler equations and turbulence: analytical approach to intermittency

    Full text link
    Physical models of intermittency in fully developed turbulence employ many phenomenological concepts such as active volume, region, eddy, energy accumulation set, etc, used to describe non-uniformity of the energy cascade. In this paper we give those notions a precise mathematical meaning in the language of the Littlewood-Paley analysis. We further use our definitions to recover scaling laws for the energy spectrum and second order structure function with proper intermittency correction.Comment: This is an updated version. Published in SIMA, 201

    An inviscid dyadic model of turbulence: the fixed point and Onsager's conjecture

    Full text link
    Properties of an infinite system of nonlinearly coupled ordinary differential equations are discussed. This system models some properties present in the equations of motion for an inviscid fluid such as the skew symmetry and the 3-dimensional scaling of the quadratic nonlinearity. It is proved that the system with forcing has a unique equilibrium and that every solution blows up in finite time in H5/6H^{5/6}-norm. Onsager's conjecture is confirmed for the model system

    On the Clark-alpha model of turbulence: global regularity and long--time dynamics

    Full text link
    In this paper we study a well-known three--dimensional turbulence model, the filtered Clark model, or Clark-alpha model. This is Large Eddy Simulation (LES) tensor-diffusivity model of turbulent flows with an additional spatial filter of width alpha (α\alpha). We show the global well-posedness of this model with constant Navier-Stokes (eddy) viscosity. Moreover, we establish the existence of a finite dimensional global attractor for this dissipative evolution system, and we provide an anaytical estimate for its fractal and Hausdorff dimensions. Our estimate is proportional to (L/ld)3(L/l_d)^3, where LL is the integral spatial scale and ldl_d is the viscous dissipation length scale. This explicit bound is consistent with the physical estimate for the number of degrees of freedom based on heuristic arguments. Using semi-rigorous physical arguments we show that the inertial range of the energy spectrum for the Clark-a˚\aa model has the usual k−5/3k^{-5/3} Kolmogorov power law for wave numbers ka˚≪1k\aa \ll 1 and k−3k^{-3} decay power law for ka˚≫1.k\aa \gg 1. This is evidence that the Clark−α-\alpha model parameterizes efficiently the large wave numbers within the inertial range, ka˚≫1k\aa \gg 1, so that they contain much less translational kinetic energy than their counterparts in the Navier-Stokes equations.Comment: 11 pages, no figures, submitted to J of Turbulenc

    Coherent vortex structures and 3D enstrophy cascade

    Full text link
    Existence of 2D enstrophy cascade in a suitable mathematical setting, and under suitable conditions compatible with 2D turbulence phenomenology, is known both in the Fourier and in the physical scales. The goal of this paper is to show that the same geometric condition preventing the formation of singularities - 1/2-H\"older coherence of the vorticity direction - coupled with a suitable condition on a modified Kraichnan scale, and under a certain modulation assumption on evolution of the vorticity, leads to existence of 3D enstrophy cascade in physical scales of the flow.Comment: 15 pp; final version -- to appear in CM

    Leray and LANS-α\alpha modeling of turbulent mixing

    Get PDF
    Mathematical regularisation of the nonlinear terms in the Navier-Stokes equations provides a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corresponding modelled system of equations. We will consider the large eddy interpretation of two such mathematical regularisation principles, i.e., Leray and LANS−α-\alpha regularisation. The Leray principle introduces a {\bfi smoothed transport velocity} as part of the regularised convective nonlinearity. The LANS−α-\alpha principle extends the Leray formulation in a natural way in which a {\bfi filtered Kelvin circulation theorem}, incorporating the smoothed transport velocity, is explicitly satisfied. These regularisation principles give rise to implied subgrid closures which will be applied in large eddy simulation of turbulent mixing. Comparison with filtered direct numerical simulation data, and with predictions obtained from popular dynamic eddy-viscosity modelling, shows that these mathematical regularisation models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure
    • …
    corecore