
Pak and Park Advances in Difference Equations 2013, 2013:153
http://www.advancesindifferenceequations.com/content/2013/1/153

RESEARCH Open Access

Persistence of the incompressible Euler
equations in a Besov space Bd+

, (Rd)
Hee Chul Pak1* and Young Ja Park2

*Correspondence:
hpak@dankook.ac.kr
1Department of Applied
Mathematics, Dankook University,
Anseo-Dong 29, Cheonan,
Chungnam 330-714, Republic of
Korea
Full list of author information is
available at the end of the article

Abstract
The unique existence of a solution of the incompressible Euler equations in a critical
Besov space Bd+1

1,1 (R
d) for d ≥ 2 is investigated. The global existence of a solution of

two-dimensional Euler equations is also discussed.
MSC: Primary 76B03; secondary 35Q31

Keywords: Euler equations; Besov spaces; well-posedness; uniqueness; global
existence

1 Main theorems and terminology
The non-stationary Euler equations of an ideal incompressible fluid

∂

∂t
u + (u,∇)u = –∇p, ()

divu = 

are considered. Here u(x, t) = (u,u, . . . ,ud) is the Eulerian velocity of a fluid flow and
(u,∇)uk =

∑d
i= ui∂iuk , k = , , . . . ,d with ∂i ≡ ∂

∂xi
.

The best local existence and uniqueness results known for the Euler equations () in
Besov spaces are a series of theorems on the space Bd/p+

p, (Rd) with  < p ≤ ∞ (see the
introductions in [, ] for details and the references therein). The local existence for the
limit case of p =  has not been reported yet possibly due to the lack of L-estimates. On
the other hand, the ill-posedness of the Euler equations in [] for a range of Besov spaces
has been recently studied, which signifies that it is worthwhile to clarify either the well-
posedness or the ill-posedness of the solutions in some particular Besov spaces. This is
why the existence problem in the space Bd+

, (Rd) is not trivial even though it is smaller
than the space B∞,(Rd).
This paper takes care of the local unique existence of the solution to the Euler equations

() in a critical Besov space Bd+
, (Rd) and of the global existence for a two-dimensional

case. Our main results are the following.

Theorem . (Local existence and uniqueness) For any divergence-free vector field u ∈
Bd+
, (Rd), there exists a positive timeT forwhich the initial value problem ()with u|t= = u

has a unique solution u in the space C([,T];Bd+
, (Rd)).

Furthermore,
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Theorem . (-D global existence) For any divergence-free vector field u ∈ B
,(R),

there exists a unique solution u ∈ C([,∞);B
,(R)) of the problem () with u|t= = u.

The compactness argument was used for the main literature in the proof employed by
the authors in [], and one of the primary difficulties of estimates was to get rid of the
L-singularity. To take care of it, we present some new estimates together with substantial
modifications of the identities and of the estimates proved in []. The essential tools for
a priori estimates are Bony’s para-product formula and Littlewood-Paley decomposition.
An Osgood-type ordinary differential inequality is solved to complete the compactness
argument.
For the proof of global existence in two-dimensional case, the limiting case of Beale-

Kato-Majda inequality in -D is fetched,which is amodification of the inequality originally
proved in [] by Vishik. In [], Chae proved the global existence of velocity in the Triebel-
Lizorkin spaces F

,q(R),  < q < ∞, for the -D Euler equations, and also discussed the
vorticity existence in the spaces F

,q(R), q =  or ∞. Since the spaces Bs
q,q(Rd) are equiv-

alent to the spaces Fs
q,q(Rd), our -D global velocity existence theorem is similar to Chae’s

theorem displayed in [].
Here are some notations. Let S(Rd) be the Schwartz class of rapidly decreasing func-

tions. Consider a nonnegative radial function χ ∈ S(Rd) satisfying suppχ ⊂ {ξ ∈ R
d :

|ξ | ≤ 
 } and χ =  for |ξ | ≤ 

 . Set hj(ξ ) ≡ χ (–j–ξ ) – χ (–jξ ), and it can be easily seen
that

χ (ξ ) +
∞∑
j=

hj(ξ ) =  for ξ ∈R
d.

Let ϕj and � be functions defined by ϕj ≡F–(hj), j ≥  and � ≡F–(χ ), where F repre-
sents the Fourier transformonRd . Note that ϕj is amollifier of ϕ, that is, ϕj(x)≡ jdϕ(jx)
(or ϕ̂j(ξ ) = ϕ̂(–jξ )). One can readily check that

�(x) +
k–∑
j=

ϕj(x) = kd�
(
kx

)
for k ≥ .

For f ∈ S ′(Rd), denote �jf ≡ hj(D)f = ϕj ∗ f if j ≥ , �–f ≡ � ∗ f and �jf =  if j ≤ –.
The partial sums are also defined: Skf ≡ ∑k

j=–∞ �jf for k ∈ Z. Assume that s ∈ R, and
 ≤ p,q ≤ ∞. The Besov spaces Bs

p,q(Rd) are defined by

f ∈ Bs
p,q

(
R

d) ⇔ {∥∥js�jf
∥∥
Lp

}
j∈Z ∈ lq.

The corresponding spaces of vector-valued functions are denoted by the bold faced sym-
bols. For example, the product space L(Rd)d is denoted by L(Rd) and the corresponding
triple Besov spaces Bs

p,q(Rd) by Bs
p,q(Rd) ≡ Bs

p,q(Rd)d . Note that the classical Hölder spaces
Cs(Rd) are equivalent to the Besov spaces Bs∞,∞(Rd) (if s ∈ R –N); see, for example, p.
in [] or [].

Notation Throughout this paper (especially in Section ), the notation X � Y means that
X ≤ CY , where C is a fixed but unspecified constant. Unless explicitly stated otherwise,

http://www.advancesindifferenceequations.com/content/2013/1/153
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C may depend on the dimension d and various other parameters (such as exponents), but
not on the functions or variables (u, v, f , g,xi, . . .) involved.

2 Local existence and uniqueness of the solution
The proof of Theorem . is presented in this section. Initial velocity u|t= = u ∈ Bd+

, (Rd)
is given. In order to prove that the velocity u(t) (representing the solution of the Euler
equations ()) stays (locally) in the function space Bd+

, (Rd), we start with defining a se-
quence {um}m∈N of vector fields depending on time by means of the following restrictions
on each initial vector field:

um|t= = Smu, m = , , , . . . ,

∂

∂t
um + (um,∇)um = –∇pm. ()

Thenwe first note that um() ∈ Cs(Rd) for any s ∈ (,∞). Therefore, for fixed s ∈ (d+,∞),
classical results (see []) say that for each m, there exist a maximal time T∗

m ∈ (,∞] and
a solution um to the Euler equations () in C([,T∗

m);Cs(Rd)). In case of dimension , it is
well-known that T∗

m = ∞. That is, there is a global solution um ∈ C([,∞);Cs(R)).

2.1 Compactness of the sequence {um}m∈N
Take the �j operator and add the term (Sjum,∇)�jum on both sides of () to have

∂

∂t
�jum + (Sjum,∇)�jum = (Sjum,∇)�jum –�j(um,∇)um –�j∇pm.

Consider the trajectory flow {Xm
j (x, t)} along Sjum defined by the solutions of the ordinary

differential equations

{
∂
∂t X

m
j (x, t) = (Sjum)(Xm

j (x, t), t),
Xm
j (x, ) = x

(observe divSjum =  implies that x �→ Xm
j (x, t) is a volume preserving mapping) to get

∥∥�jum(t)
∥∥
L ≤ ‖�jSmu‖L +

∫ t


‖�j∇pm‖L dτ

+
∫ t



∥∥(Sjum,∇)�jum –�j
(
(um,∇)um

)∥∥
L dτ . ()

Multiply j(d+) on both sides and sum up together to achieve

∥∥um(t)∥∥Bd+,
≤ ‖Smu‖Bd+,

+
∫ t


‖∇pm‖Bd+,

dτ

+
∫ t



∑
j≥–

j(d+)
∥∥(Sj–um,∇)�jum –�j

(
(um,∇)um

)∥∥
L dτ .

Propositions . and . in Section  yield

∥∥um(t)∥∥Bd+,
≤ C‖u‖Bd+,

+C

∫ t



∥∥∇um(τ )
∥∥
Bd,

∥∥um(τ )∥∥Bd+,
dτ ()

http://www.advancesindifferenceequations.com/content/2013/1/153
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for some constant C > . By virtue of Gronwall’s inequality, this leads to

sup
≤τ≤t

∥∥um(τ )∥∥Bd+,
≤ C‖u‖Bd+,

exp

{
C

∫ t


sup

≤τ ′≤τ

∥∥um(
τ ′)∥∥

Bd+,
dτ

}
. ()

Let λ(·) satisfy the following ordinary differential equation:

d
dt

λ = Cλ
, λ() = C‖u‖Bd+,

, ()

and let

λ(t) ≡ C‖u‖Bd+,
exp

{
C

∫ t


sup

≤τ ′≤τ

∥∥um(
τ ′)∥∥

Bd+,
dτ

}
.

Then from () it can be noticed that

d
dt

λ ≤ Cλ

 , λ() = C‖u‖Bd+,

. ()

The time T >  is chosen to be less than the blow-up time for (). Then, by solving the
separable ordinary differential inequality (), we see that λ(t)≤ λ(t) for t ∈ [,T]. Indeed,
() leads to – d

dt (

λ
) ≤ C. This yields that for t ∈ [,T],

λ(t) ≤
C‖u‖Bd+,

 – tC
‖u‖Bd+,

= λ(t).

Hence we have that

sup
≤τ≤t

∥∥um(τ )∥∥Bd+,
≤ λ(t), t ∈ [,T] ()

for all m ∈ N, that is, the sequence {um}m∈N is uniformly bounded in L∞([,T];Bd+
, ).

From the blow-up criterion on p. in [], saying that

T∗
m < ∞ ⇒

∫ T∗
m



∥∥um(τ )∥∥C dτ = ∞,

and from the fact that ‖um(τ )‖C ≤ ‖um(τ )‖Bd+,
, we see that T >  is a lower bound of

{T∗
m :m ∈N}.
We close this section by explaining the continuity of um on [,T] with values in the

Besov space Bd+
, (Rd).

Lemma . (Temporal regularity) Suppose that v is a solution for the Euler equations ()
staying inside of L∞([,T];Bd+

, ) with initial velocity v ∈ Bd+
, (Rd). Then v is continuous

on [,T] with values in Bd+
, (Rd), that is, v ∈ C([,T];Bd+

, ).

Proof First, applying Propositions . and . in Section  to the Euler equations (), we
can deduce that ∂

∂t v ∈ L∞([,T];Bd
,), and so v ∈W ,∞([,T];Bd

,) ⊂ C([,T];Bd
,).

http://www.advancesindifferenceequations.com/content/2013/1/153
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For any 
 ∈ N, we put w
 ≡ S
v. We will demonstrate that the sequence {w
}
∈N con-
verges to v in L∞([,T];Bd+

, ). As in the beginning of Section ., we obtain that

∂

∂t
�jv + (Sjv,∇)�jv = (Sjv,∇)�jv –�j(v,∇)v –�j∇p

for j ∈ N. The interchange of the two operators ∂
∂t and �j on the left-hand side follows

from the fact that ∂
∂t v ∈ L∞([,T];L∞(Rd)). Since �jv is absolutely continuous on [,T]

with values in L(Rd), we get

∥∥�jv(t)
∥∥
L ≤ ‖�jv‖L +

∫ t


‖�j∇p‖L dτ

+
∫ t



∥∥(Sjv,∇)�jv –�j
(
(v,∇)v

)∥∥
L dτ .

This implies that for t ∈ [,T],

∥∥v(t) –w
(t)
∥∥
Bd+,

�
∑
j≥


j(d+)
∥∥�jv(t)

∥∥
L

�
∑
j≥


j(d+)‖�jv‖L +
∫ t



∑
j≥


j(d+)‖�j∇p‖L dτ

+
∫ t



∑
j≥


j(d+)
∥∥(Sj–v,∇)�jv –�j

(
(v,∇)v

)∥∥
L dτ .

The first term of the right-hand side converges to zero as 
 tends to infinity because
v ∈ Bd+

, (Rd). By virtue of Propositions . and . in Section  and the fact that v(t) ∈
Bd+
, (Rd), the second and third terms of the right-hand side also converge to zero as 
 tends

to infinity. Hence the sequence {w
}
∈N converges to v in L∞([,T];Bd+
, ).

From the estimate

∥∥w
(s) –w
(t)
∥∥
Bd+,

=
∥∥S


(
v(s) – v(t)

)∥∥
Bd+,

�

+∑
j=–

j(d+)
∥∥�j

(
v(s) – v(t)

)∥∥
L

� 
+∥∥v(s) – v(t)
∥∥
Bd,

together with the fact that v ∈ C([,T];Bd
,), we can deduce that each w
 is continuous

on [,T] with values in Bd+
, (Rd). In all, the limit v is continuous on [,T] with values in

Bd+
, (Rd). �

From this lemma, we observe that um ∈ C([,T];Bd+
, ).We also notice that the sequence

{ ∂
∂t um}m∈N is uniformly bounded in L∞([,T];Bd

,), thanks to Propositions . and ..

http://www.advancesindifferenceequations.com/content/2013/1/153
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2.2 Convergence of the sequence {um}m∈N
We now select a strictly positive time T depending on ‖u‖Bd+,

so that the sequence
{um}m∈N is a Cauchy sequence in L∞([,T];Bd

,). To do this, subtract the two relations
on () to get

∂

∂t
(um+
 – um) + (um+
,∇)(um+
 – um)

+ (um+
 – um,∇)um

= π (um+
 – um,um+
) + π (um,um+
 – um), ()

(um+
 – um)|t= = �m+
u,

where we set

π (u, v) ≡
d∑

i,j=

∇�–∂iuj∂jvi

(refer to Section . in []). Take the �j operator, and add (Sj–um+
,∇)�j(um+
 – um) on
both sides of () to have

∥∥(um+
 – um)(t)
∥∥
Bd,

≤ ‖�m+
u‖Bd,
+

∫ t



∑
j≥–

∥∥(Sj–um+
,∇)�j(um+
 – um) –�j(um,∇)(um+
 – um)
∥∥
L dτ

+
∫ t



∥∥(um+
 – um,∇)um
∥∥
Bd,

dτ

+
∫ t



∥∥π (um+
 – um,um+
) + π (um,um+
 – um)
∥∥
Bd,

dτ .

Propositions .-. and estimate () can be used as before to get

‖um+
 – um‖L∞([,T];Bd,)
≤ ‖�m+
u‖Bd,

+CTλ(T)‖um+
 – um‖L∞([,T];Bd,)
,

for T ≤ T and some constant C >  independent of ‖u‖Bd+,
, where λ(·) is defined in ().

Choose T >  small enough to ensure T <min{T, 
Cλ(T)

}, and we have

‖um+
–um‖L∞([,T];Bd,)
≤ ‖�m+
u‖Bd, ≤ –m+
‖�m+
u‖Bd+,

.

This implies that {um}m∈N is a Cauchy sequence in C([,T];Bd
,(Rd)). Hence there exists

a strong limit u of the sequence {um}m∈N in the space C([,T];Bd
,(Rd)).

http://www.advancesindifferenceequations.com/content/2013/1/153
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Wepoint out that the sequence of pressures {pm}m∈N is a Cauchy sequence in L∞([,T];
H(Rd)). In fact, since each pm can be represented by

pm =
d∑

i,j=

(–�)–
∂

∂xi
∂

∂xj
uimu

j
m =

d∑
i,j=

RiRjuimu
j
m,

where Ri’s are the d-dimensional Riesz transforms, we have, for ≤ t ≤ T,

∥∥pm+
(t) – pm(t)
∥∥
L �

d∑
i,j=

∥∥uim+
(t)u
j
m+
(t) – uim(t)u

j
m(t)

∥∥
L

�
(∥∥um+
(t)

∥∥
L∞ +

∥∥um(t)∥∥L∞
)∥∥um+
(t) – um(t)

∥∥
Bd,

and

∥∥∇pm+
(t) –∇pm(t)
∥∥
L

�
(∥∥um+
(t)

∥∥
Bd+,

+
∥∥um(t)∥∥Bd+,

)∥∥um+
(t) – um(t)
∥∥
Bd,

.

Hence there exists p ∈ L∞([,T];H(Rd)) such that

pm → p strongly in L∞(
[,T];H(

R
d)). ()

2.3 Local existence of a solution
We first claim that the limit u stays in L∞([,T];Bd+

, (Rd)). Since the sequence {um}m∈N
is bounded in L∞([,T];Bd+

, (Rd)) and the sequence { ∂
∂t um}m∈N is bounded in L∞([,T];

Bd
,(Rd)) (see the last paragraph of Section .), we can find two vector fields v ∈

L∞([,T];Bd+
, (Rd)) and w ∈ L∞([,T];Bd

,(Rd)) satisfying (after possibly choosing sub-
sequences)

um ⇀ v weakly* in L∞(
[,T];Bd+

,
(
R

d))
and

∂

∂t
um ⇀ w weakly* in L∞(

[,T];Bd
,

(
R

d)).
On the other hand, since the sequence {um}m∈N converges strongly to u in C([,T];
Bd
,(Rd)), we have that

um ⇀ u weakly* in L∞(
[,T];Bd

,
(
R

d)).
Due to the fact that the two limits should coincide, we have u = v ∈ L∞([,T];Bd+

, (Rd)),
and ∂

∂t u = w ∈ L∞([,T];Bd
,(Rd)). This implies that u is absolutely continuous on [,T]

with values in Bd
,(Rd).

We now verify that u satisfies the Euler equations (). We notice that the convergence of
the sequence {um}m∈N to the limit u in C([,T];Bd

,(Rd)) implies that

um → u strongly in L∞(
[,T];L(

R
d)). ()

http://www.advancesindifferenceequations.com/content/2013/1/153
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(See the inclusion ().)We also note that u is absolutely continuous on [,T] with values
inL(Rd). For any test vector field ρ ∈ S(Rd) and test function θ ∈ C∞([,T]) with θ (T) =
, apply the L(Rd)-inner product 〈·, ·〉 to the Euler equations corresponding to () to get
the functional formulation

〈
∂

∂t
um(t),ρ

〉
θ (t) +

〈(
um(t),∇

)
um(t),ρ

〉
θ (t) = –〈∇pm,ρ〉θ (t).

Integrate both sides with respect to time to achieve

∫ T



〈
∂

∂t
um(τ ),ρ

〉
θ (τ )dτ +

∫ T



〈
(um,∇)um,ρ

〉
θ (τ )dτ = –

∫ T


〈∇pm,ρ〉θ (τ )dτ .

As m tends to infinity, um() = Smu converges to u in the sense of distribution (p. in
[]). Hence integration by parts and an application of () establish the limit of the first
term:

∫ T



〈
∂

∂t
um(τ ),ρ

〉
θ (τ )dτ = –

〈
um(),ρ

〉
θ () –

∫ T



〈
um(τ ),ρ

〉 ∂

∂t
θ (τ )dτ

→ –〈u,ρ〉θ () –
∫ T



〈
u(τ ),ρ

〉 ∂

∂t
θ (τ )dτ

=
∫ T



〈
∂

∂t
u(τ ),ρ

〉
θ (τ )dτ

as m → ∞. The last equality comes from the uniqueness of the limit since the sequence
{ ∂

∂t um}m∈N weak∗-converges to ∂
∂t u in L∞([,T];L(Rd)). Hence the absolute continuity

of the function 〈u,ρ〉θ on [,T] yields u() = u. Green’s formula and () take the second
term to

∫ T



〈(
um(τ ),∇

)
um(τ ),ρ

〉
θ (τ )dτ = –

∫ T



〈
um(τ ),

(
um(τ ),∇

)
ρ
〉
θ (τ )dτ

→ –
∫ T



〈
u(τ ),

(
u(τ ),∇)

ρ
〉
θ (τ )dτ

=
∫ T



〈(
u(τ ),∇)

u(τ ),ρ
〉
θ (τ )dτ

asm → ∞. On the other hand, () can be used to make the right-hand side get to

–
∫ T


〈∇pm,ρ〉θ (τ )dτ =

∫ T


〈pm,divρ〉θ (τ )dτ

→
∫ T


〈p,divρ〉θ (τ )dτ = –

∫ T


〈∇p,ρ〉θ (τ )dτ

asm → ∞. Therefore we obtain the limit formulation

∫ T



〈
∂

∂t
u(τ ) +

(
u(τ ),∇)

u(τ ) +∇p(τ ),ρ
〉
θ (τ )dτ = 

http://www.advancesindifferenceequations.com/content/2013/1/153
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for all ρ ∈ S(Rd) and θ ∈ C∞([,T]) with θ (T) = . Also, the constraint divum =  turns
into

 = 〈divum,�〉 = –〈um,∇�〉 → 〈u,∇�〉 =  for any � ∈ S
(
R

d)
asm→ ∞. Thereforewe get that divu = . In all, it has been shown that the limit u satisfies
the Euler equations and the initial condition

⎧⎪⎨
⎪⎩

∂
∂t u + (u,∇)u +∇p = ,
divu = ,
u|t= = u.

So far, we have shown that u is a solution for the Euler equations () located in
L∞([,T];Bd+

, ). Hence, by virtue of Lemma ., we conclude that u belongs to C([,T];
Bd+
, (Rd)). We may continue to use this argument until the value ‖u(T∗)‖Bd+,

blows up,
that is, limt↑T∗ ‖u(t)‖Bd+,

= ∞. This completes the proof of the local existence.

2.4 Uniqueness of a solution
In order to prove the uniqueness, we consider two solutions u and v of the system () in
C([,T);Bd+

, (Rd)) with the same initial velocity. Subtraction of the equations satisfied by
them says that the vector field u – v obeys

∂

∂t
(u – v) + (u,∇)(u – v) = (v – u,∇)v + π (u,u) – π (v, v),

(u – v)|t= = ,

where π (u, v) was defined previously. Propositions .-. and the argument used in Sec-
tion . yield

‖u – v‖Bd, ≤ C

∫ T



(‖u‖Bd+,
+ ‖v‖Bd+,

)‖u – v‖Bd, dτ

for some constantC > . Then, for sufficiently small T >  (see () in Section .), we have

‖u – v‖C([,T];Bd,) ≤ Cλ(T)T‖u – v‖C([,T];Bd,),

which in turn implies the uniqueness of a solution for () in C([,T∗);Bd+
, ).

3 2-D global existence - Proof of Theorem 1.2
The -D vorticity equation corresponding to the Euler equations () is given by

∂

∂t
ω + (u,∇)ω = , ()

where ω ≡ curlu with the initial vorticity ω ≡ curlu. We consider the trajectory flow
{X(x, t)} along u defined by the solution of

{
∂
∂t X(x, t) = u(X(x, t), t),
X(x, ) = x.

()

http://www.advancesindifferenceequations.com/content/2013/1/153
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Then it is well-known that the solution ω(x, t) of the -D vorticity equation can be repre-
sented by

ω(x, t) = ω
(
X–(x, t)

)
, x ∈R

. ()

We now point out that the same argument used in Section . can be employed to give
the estimate

∥∥u(t)∥∥B,
≤ C‖u‖B, exp

{
C

∫ t



∥∥∇u(τ )
∥∥
L∞ +

∥∥u(τ )∥∥L dτ

}

(see the estimates (), () and the estimate () in Proposition .). From the fact
that ‖∇u‖L∞ � ‖ω‖Ḃ∞,

� ‖ω‖B/pp,
( < p < ∞) and the conservation of kinetic energy

‖u(t)‖L = ‖u‖L (see p. in []), we get

∥∥u(t)∥∥B,
≤ C‖u‖B, exp

{
C

∫ t



(∥∥ω(τ )
∥∥
B/pp,

+ ‖u‖L
)
dτ

}
. ()

The estimate () suggests that we focus on proving that ‖ω(t)‖B/pp,
does not blow up for

all time. For this, we recall the limiting case of Beale-Kato-Majda inequality in B/p
p, .

Proposition . (Vishik’s inequality) For  ≤ s <  and  ≤ p≤ ∞, we have

∥∥ω(t)
∥∥
Bsp,

�
(
 + log

(∥∥∇xX(·, t)
∥∥
L∞

∥∥∇xX–(·, t)∥∥L∞
))‖ω‖Bsp, .

The original version of the proposition was proved by Vishik in the space B∞,(Rd) in
[], and Chae later generalized it to the Besov spaces B

p,q(Rd) and the Triebel-Lizorkin
spaces F

p,q(Rd) in []. Our version (in Bs
p,(Rd)) can be considered as a slight generalization

of those, and the proof is almost the same as the original proof except for inserting the
differential index js.
Vishik’s inequality explains the exponential growth of Bd

,-norm of vorticity ω(t) as fol-
lows. The identity induced from ()

∂

∂t
∇xX(x, t) = (∇u)

(
X(x, t), t

) · ∇xX(x, t)

implies

∥∥∇xX(·, t)
∥∥
L∞ ≤  +

∫ t



∥∥∇u
(
X(·, τ ), τ)∥∥

L∞
∥∥∇xX(·, τ )

∥∥
L∞ dτ .

Gronwall’s inequality and subsequently Vishik’s inequality yield that

∥∥∇xX(·, t)
∥∥
L∞ ≤ exp

{∫ t



∥∥∇u(·, τ )∥∥L∞ dτ

}

≤ exp

{
C

∫ t



∥∥ω(τ )
∥∥
B/pp,

dτ

}

≤ exp

{
C‖ω‖B,

∫ t



(
 + log

(∥∥∇xX(τ )
∥∥
L∞

∥∥∇xX–(τ )
∥∥
L∞

))
dτ

}
,

http://www.advancesindifferenceequations.com/content/2013/1/153
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where p > , and in particular, the third inequality follows from the fact that ‖ω‖B/pp,
�

‖ω‖B, . Similar techniques can be used to have

∥∥∇xX–(·, t)∥∥L∞

≤ exp

{
C‖ω‖B,

∫ t



(
 + log

(∥∥∇xX(τ )
∥∥
L∞

∥∥∇xX–(τ )
∥∥
L∞

))
dτ

}
.

Combine these estimates together to get

∥∥∇xX(·, t)
∥∥
L∞

∥∥∇xX–(·, t)∥∥L∞

≤ exp

{
C‖ω‖B,

∫ t



(
 + log

(∥∥∇xX(τ )
∥∥
L∞

∥∥∇xX–(τ )
∥∥
L∞

))
dτ

}
.

Or

log
(∥∥∇xX(·, t)

∥∥
L∞

∥∥∇xX–(·, t)∥∥L∞
)

� ‖ω‖B,
∫ t



(
 + log

(∥∥∇xX(·, τ )
∥∥
L∞

∥∥∇xX–(·, τ )∥∥L∞
))
dτ .

Now Gronwall’s inequality can be adopted to get

log
(∥∥∇xX(·, t)

∥∥
L∞

∥∥∇xX–(·, t)∥∥L∞
)
� exp

(
C‖ω‖B, t

)
.

Placing this into Proposition ., we have

∥∥ω(t)
∥∥
B/pp,

�
{
 + exp

(
C‖ω‖B, t

)}‖ω‖B/pp,
� ‖ω‖B, exp

(
C‖ω‖B, t

)
.

Then put this estimate into (), and we can conclude that

∥∥u(t)∥∥B,
≤ Cu exp

{
Cu

(
eCu t + t

)}
,

where the constant Cu depends only on u (and so ω). This completes the -D global
existence of a solution in B

,(R).

4 A priori estimates
This section presents some estimates which have been used for the proofs of the main
theorems. We first recall Bony’s para-product formula which decomposes the product fg
of two functions f and g into three parts:

fg = Tf g + Tgf + R(f , g),

where Tf g represents Bony’s para-product of f and g defined by Tf g ≡ ∑
j Sj–f�jg and

R(f , g) denotes the remainder of the para-product R(f , g) ≡ ∑
|i–j|≤ �if�jg . The estimates

of para-product parts in Bs
,(Rd) are provided as follows.

http://www.advancesindifferenceequations.com/content/2013/1/153
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Lemma . (Para-product estimate) Let s ∈R. For any f , g ∈ Bs
,(Rd), we have

‖Tf g‖Bs, � ‖f ‖L∞‖g‖Bs, ,

and for each i = , , . . . ,d, we also have

‖T∂if g‖Bs, � ‖f ‖L∞‖∇g‖Bs, .

Proof By considering the supports of F (Sj′–f�j′g)

suppF (Sj′–f�j′g) ⊂
{
ξ :




j
′– ≤ |ξ | ≤ 


j

′–
}
,

it can be easily noted that

�jTf g =
j+∑

j′=j–
�j{Sj′–f�j′g}.

Some computations can yield that

‖Tf g‖Bs, �
∞∑
j=–

∑
|j–j′|≤,j′≥

‖Sj′–f ‖L∞js‖�j′g‖L

� ‖f ‖L∞
∞∑
j=–

js‖�jg‖L � ‖f ‖L∞‖g‖Bs, .

The second assertion follows from Bernstein’s lemma (see p. in [])

‖T∂if g‖Bs, �
∞∑
j=–

∑
|j–j′|≤,j′≥

j‖Sj′–f ‖L∞js‖�j′g‖L

� ‖f ‖L∞‖∇g‖Bs, . �

The para-product estimate implies the following pointwise product estimate in Bs
,(Rd).

Proposition . (Product formula) Let s > . For any f , g ∈ Bs
,(Rd), we have

‖fg‖Bs, � ‖f ‖L∞‖g‖Bs, + ‖f ‖Bs,‖g‖L∞

and

‖f · ∇g‖Bs, � ‖f ‖L∞‖∇g‖Bs, + ‖∇f ‖Bs,‖g‖L∞ .

Proof Lemma . leaves us to measure the remainder term

�jR(f , g) = �j

∞∑
j=–

j+∑
i=j–

�if�jg =
∞∑

i=j–

i+∑
k=i–

�j(�if�kg).

http://www.advancesindifferenceequations.com/content/2013/1/153
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The second equality follows from computing the supports of �j(�if�kg). We now get

∥∥R(f , g)∥∥Bs,
� ‖g‖L∞

∞∑
j=–

∞∑
i=j–

(j–i)s
{
is‖�j�if ‖L

}

� ‖g‖L∞
∞∑

m=–

–ms

{ ∞∑
j=–

(j+m)s‖�j+mf ‖L
}

� ‖g‖L∞‖f ‖Bs, .

This also implies the second inequality in the statement. �

Here is a commutator estimate in L.

Lemma . (Commutator estimate) For any differentiable function f and any function g ,
we have the following commutator estimate:

∥∥[f ,�j]∂ig
∥∥
L � ‖∇f ‖L∞‖g‖L , i = , , . . . ,d,

where the commutator [f ,�j]h is defined as f�jh –�j(fh).

Proof The desired estimate comes from the following observation:

[f ,�j]∂ig(x) =
∫
Rd

ϕj(x – y)
{
f (x) – f (y)

}
∂ig(y)dy

= j(d+)
∫
Rd

∂iϕ
(
j(x – y)

){
f (x) – f (y)

}
g(y)dy + (�j∂if )g(x)

= j(d+)
∫
Rd

∂iϕ
(
j(x – y)

)(∫ 


∇f

(
x + τ (y – x)

) · (x – y)dτ

)
g(y)dy

+ (�j∂if )g(x)

=
∫
Rd

∂iϕ(z)
(
z ·

∫ 


∇f

(
x – τ–jz

)
dτ

)
g
(
x – –jz

)
dz + (�j∂if )g(x). �

We now present the primary estimates which have been used for the proof of the main
theorem.

Proposition . Let s ∈ R. For any vector field u = (u,u, . . . ,ud) and a function g , we
have

∞∑
j=–∞

js
∥∥(Sju,∇)�jg –�j(u,∇)g

∥∥
L

� ‖u‖Bs,‖∇g‖L∞ + ‖g‖Bs,‖∇u‖L∞ . ()

http://www.advancesindifferenceequations.com/content/2013/1/153
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We also have the estimate

∞∑
j=–∞

js
∥∥(Sj–u,∇)�jg –�j(u,∇)g

∥∥
L

� ‖∇u‖Bs,‖g‖L∞ + ‖g‖Bs,‖∇u‖L∞ . ()

Proof We first observe that

(Sju,∇)�jg –�j(u,∇)g = –
d∑
i=

�jT∂igui +
d∑
i=

T∂i�jgSjui ()

+
d∑
i=

[Tui∂i,�j]g ()

–
d∑
i=

{
�jR(ui, ∂ig) – R(Sjui,�j∂ig)

}
, ()

where the bracket operator [·, ·] is defined as [A,B] ≡ AB – BA. In fact, use Bony’s para-
product formula to expand �j(u,∇)g as follows:

�j(u,∇)g =
d∑
i=

�jT∂igui +�j

d∑
i=

{
Tui∂ig + R(ui, ∂ig)

}

=
d∑
i=

�jT∂igui –
d∑
i=

[Tui∂i,�j]g

+
d∑
i=

Tui–Sjui∂i�jg –
d∑
i=

T∂i�jgSjui

+
d∑
i=

{
�jR(ui, ∂ig) – R(Sjui,�j∂ig)

}
+ (Sju,∇)�jg.

By reflecting the supports of functions in the expression, it can be seen that the term∑d
i=Tui–Sjui∂i�jg vanishes. Therefore, to complete the estimate, it suffices to assess the

four terms in equations ()-(). First, Lemma . can be used to deliver the desired esti-
mates () and () for the first two para-product terms of the right-hand side of (). Now
consider the supports, and we can see that

d∑
i=

[Tui∂i,�j]g =
d∑
i=

∞∑
j′=–∞

{
Sj′–ui�j′ (∂i�jg) –�j

(
Sj′–ui∂i�j′g

)}

=
d∑
i=

j+∑
j′=j–

{
Sj′–ui�j(∂i�j′g) –�j

(
Sj′–ui∂i�j′g

)}
. ()

http://www.advancesindifferenceequations.com/content/2013/1/153
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Therefore Lemma . leads to the estimates () and () for the third term (). It remains
to estimate the last term (). We split () into two parts as follows:

() = –
d∑
i=

{
�jR(ui, ∂ig) – R(Sjui,�j∂ig)

}

= –
d∑
i=

{
�jR

(
ui – Sjui, ∂ig

)}

–
d∑
i=

{
�jR

(
Sjui, ∂ig

)
– R

(
Sjui,�j∂ig

)}

= Ij + IIj.

The first term Ij can be treated for two cases separately. That is, when j = –, Bernstein’s
lemma yields

‖I–‖L =
∥∥∥∥∥

d∑
i=

�j

∑
j′′=–

�–�ui�j′′∂ig

∥∥∥∥∥
L
�

∑
j′′=–

‖�∇u‖L∞‖�j′′g‖L . ()

For the cases when j ≥ , it suffices to assume j ≤ j′ by considering the supports of func-
tions in Ij. Hence we have

js‖Ij‖L �
d∑
i=

js
∥∥∥∥�j

∑
|j′–j′′|≤,j′≥

�j′
(
ui – Sjui

)
�j′′∂ig

∥∥∥∥
L

�
d∑
i=

∑
j′≥j,j′≥

(j–j
′)s

j′+∑
j′′=j′–

j
′′∥∥�j′ui

∥∥
L∞j

′s‖�j′′g‖L

�
∑
j′≥j

(j–j
′)s

j′+∑
j′′=j′–

‖�j′∇u‖L∞j
′′s‖�j′′g‖L

� ‖∇u‖L∞
∑
j′≥j

(j–j
′)s

j′+∑
j′′=j′–

j
′′s‖�j′′g‖L .

Therefore the estimate () together with the fact that

∑
j≥–

∑
j′≥j

(j–j
′)s

j′+∑
j′′=j′–

j
′′s‖�j′′g‖L

�
∑
m≥

–m
(

∑
j≥–

(j+m)s‖�j+mg‖L
)

�
∑
m≥

–m‖g‖Bs, � ‖g‖Bs,
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leads to

∞∑
j=–

js‖Ij‖L � ‖∇u‖L∞‖g‖Bs, . ()

A similar computation to that used above shows that

∞∑
j=–

jd‖Ij‖L � ‖u‖Bd,‖g‖Bd+,
. ()

The estimates () and () for IIj are obtained simply by using the commutator estimate
(Lemma .). By putting estimates together, the desired results can be achieved. �

The estimates for the pressure term ∇p are presented. From the Euler equations (), we
have that

–�p =
d∑

i,j=

∂uj

∂xi
∂ui

∂xj
. ()

Proposition . Let s > . For any pair of divergence-free vector fields u and v, we have

∥∥π (u, v)
∥∥
Bs+,

� ‖∇u‖L∞‖v‖Bs+,
+ ‖u‖Bs+,

(‖∇v‖L∞ + ‖v‖L
)
. ()

We also have

∥∥π (u, v)
∥∥
Bs,

� ‖∇u‖L∞‖v‖Bs, + ‖u‖Bs+,
‖v‖L∞ , ()

and

∥∥π (u, v)
∥∥
Bs,

� ‖∇v‖L∞‖u‖Bs, + ‖v‖Bs+,
‖u‖L∞ , ()

where

π (u, v) ≡
d∑

i,j=

∇�–∂iuj∂jvi = ∇�– div
(
(u,∇)v

)
.

Proof For j ≥ , Bernstein’s lemma can be used to obtain

∥∥�jπ (u, v)
∥∥
L � –j

d∑
i,k=

∥∥�j∂iuk∂kvi
∥∥
L

(refer to p. in []). Proposition . yields

∞∑
j=

j(s+)
∥∥�jπ (u, v)

∥∥
L � ‖∇u‖L∞‖∇v‖Bs, + ‖∇u‖Bs,‖∇v‖L∞ ()

http://www.advancesindifferenceequations.com/content/2013/1/153
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and also

∞∑
j=

js
∥∥�jπ (u, v)

∥∥
L � ‖∇u‖L∞‖v‖Bs, + ‖∇u‖Bs,‖v‖L∞ . ()

For j = –, we note that

∥∥�–π (u, v)
∥∥
L =

∥∥∥∥∥
d∑

i,j=

(∇�) ∗ (
�–∂iuj∂jvi

)∥∥∥∥∥
L

=

∥∥∥∥∥
d∑

i,j=

(
�–∇�

) ∗ ∂j∂i
(
ujvi

)∥∥∥∥∥
L

≤ 
d(d – )α(d)

∥∥∥∥∥
d∑

i,j=

∂i∂j

(
∇ 

|x|d– ∗ �

)∥∥∥∥∥
L

‖u⊗ v‖L , ()

where α(d) denotes the volume of the unit ball in R
d . For the case of dimension

d = , the factor 
d(d–)α(d)‖

∑d
i,j= ∂i∂j(∇ 

|x|d– ∗ �)‖L in () ought to be replaced by

π ‖∑

i,j= ∂i∂j(∇ log |x| ∗ �)‖L . Observe that

∥∥∥∥∥
d∑

i,j=

∂i∂j

(
∇ 

|x|d– ∗ �

)∥∥∥∥∥
L

≤
d∑

i,j=

(∥∥∥∥
(

η∇ 
|x|d–

)
∗ (∂i∂j�)

∥∥∥∥
L
+

∥∥∥∥∂i∂j

(
( – η)∇ 

|x|d–
)

∗ �

∥∥∥∥
L

)
≤ C,

where η ∈ C∞
 (Rd) is a radial cut-off function satisfying η(x) = , |x| ≤  and η(x) = , |x| ≥

. Then we can conclude

∥∥�–π (u, v)
∥∥
L � ‖u‖L‖v‖L ()

or

∥∥�–π (u, v)
∥∥
L � ‖u‖L‖v‖L∞ . ()

The fact that

‖u‖L ≤ ‖u‖B, � ‖u‖B/,
� ‖u‖Bs+,

()

and the estimate () yield the first estimate (). Also, the second estimate () follows
from the estimate () together with (). The last estimate () follows from the symme-
try of π ; π (u, v) = π (v,u). �
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