56 research outputs found

    From Vulnerable Plaque to Vulnerable Patient

    Get PDF
    Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document will focus on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients

    MCP-1 and CCR2 Contribute to Non-Lymphocyte-Mediated Brain Disease Induced by Fr98 Polytropic Retrovirus Infection in Mice: Role for Astrocytes in Retroviral Neuropathogenesis

    No full text
    Virus infection of the central nervous system (CNS) often results in chemokine upregulation. Although often associated with lymphocyte recruitment, increased chemokine expression is also associated with non-lymphocyte-mediated CNS disease. In these instances, the effect of chemokine upregulation on neurological disease is unclear. In vitro, several chemokines including monocyte chemotactic protein 1 (MCP-1) protect neurons from apoptosis. Therefore, in vivo, chemokine upregulation may be a protective host response to CNS damage. Alternatively, chemokines may contribute to pathogenesis by stimulating intrinsic brain cells or recruiting macrophages to the brain. To investigate these possibilities, we studied a neurovirulent retrovirus, Fr98, that induces severe non-lymphocyte-mediated neurological disease and causes the upregulation of several chemokines that bind to chemokine receptors CCR2 and CCR5. Knockout mice deficient in CCR2 had reduced susceptibility to Fr98 pathogenesis, with significantly fewer mice developing clinical disease than did wild-type controls. In contrast, no reduction in Fr98-induced disease was observed in CCR5 knockout mice. Thus, signaling through CCR2, but not CCR5, plays an important role in Fr98-mediated pathogenesis. Three ligands for CCR2 (MCP-1, MCP-3, and MCP-5) were upregulated during Fr98 infection of the brain. Antibody-blocking experiments demonstrated that MCP-1 was important for retrovirus-induced neurological disease. In situ hybridization analysis revealed that MCP-1 was expressed by glial fibrillary acidic protein-positive astrocytes. Thus, astrocytes, previously not thought to play an effector role in the disease process were found to contribute to pathogenesis through the production of MCP-1. This study also demonstrates that chemokines can mediate pathogenesis in the CNS in the absence of lymphocytic infiltrate and gives credence to the hypothesis that chemokine upregulation is a mechanism by which retroviruses such as human immunodeficiency virus induce neurological damage
    corecore