28 research outputs found

    Fit‐for‐Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience

    Get PDF
    Biometric Monitoring Technologies (BioMeTs) are becoming increasingly common to aid data collection in clinical trials and practice. The state of BioMeTs, and associated digitally measured biomarkers, is highly reminiscent of the field of laboratory biomarkers two decades ago. In this review, we have summarized and leveraged historical perspectives, and lessons learned from laboratory biomarkers as they apply to BioMeTs. Both categories share common features, including goals and roles in biomedical research, definitions, and many elements of the biomarker qualification framework. They can also be classified based on the underlying technology, each with distinct features and performance characteristics, which require bench and human experimentation testing phases. In contrast to laboratory biomarkers, digitally measured biomarkers require prospective data collection for purposes of analytical validation in human subjects, lack well-established and widely accepted performance characteristics, require human factor testing and, for many applications, access to raw (sample-level) data. Novel methods to handle large volumes of data, as well as security and data rights requirements add to the complexity of this emerging field. Our review highlights the need for a common framework with appropriate vocabulary and standardized approaches to evaluate digitally measured biomarkers, including defining performance characteristics and acceptance criteria. Additionally, the need for human factor testing drives early patient engagement during technology development. Finally, the use of BioMeTs requires a relatively high degree of technology literacy among both study participants and healthcare professionals. Transparency of data generation and the need for novel analytical and statistical tools creates opportunities for precompetitive collaborations

    Critical literacy as a pedagogical goal in English language teaching

    Get PDF
    In this chapter, the authors provide an overview of the area of critical literacy as it pertains to second language pedagogy (curriculum and instruction). After considering the historical origins of critical literacy (from antiquity, and including in first language education), they consider how it began to penetrate the field of applied linguistics. They note the geographical and institutional spread of critical literacy practice as documented by published accounts. They then sketch the main features of L2 critical literacy practice. To do this, they acknowledge how practitioners have reported on their practices regarding classroom content and process. The authors also draw attention to the outcomes of these practices as well as challenges that practitioners have encountered in incorporating critical literacy into their second language classrooms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Using resource economics to anticipate forest land use change in the U.S. MidAtlantic region. Environmental Monitoring and Assessment

    No full text
    Abstract. Demands for forest, farm, and developed land are evolving in the U.S. mid-Atlantic region. The demand for land in developed uses, as well as demands for various forest and farm products are changing in response to population growth, demographic shifts, and market forces. As demand factors change so do relative land values. Land area in future forest, farm, and developed uses may shift as landowners re-evaluate relative net benefits from land use alternatives. This study examines the effects of various land demand and supply factors on the determination of land use patterns in the mid-Atlantic region. Driving variables include costs and benefits from various uses, population density, and measures of land quality. Model parameters are estimated using a binomial logit procedure. Results from the study are used to estimate proportions of forest area on a county by county basis. Simulated forest landscapes under hypothetical future conditions are prepared and illustrated using geographic information system (GIS) techniques. 1

    Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes

    No full text
    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease
    corecore