11 research outputs found

    NIH Workshop 2018: Towards Minimally-invasive or Non-invasive Approaches to Assess Tissue Oxygenation Pre- and Post-Transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (e.g., transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to construct recommendations for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion. The workshop was structured into four sessions: (1) Global Perspective; (2) Organ Systems; (3) Neonatology; and (4) Emerging Technologies. The first day provided an overview of current approaches in the clinical setting, both from a global perspective, including the use of metabolomics for studying RBCs and tissue perfusion, and from a more focused perspective, including tissue oxygenation assessments in neonates and in specific adult organ systems. The second day focused on emerging technologies, which could be applied pre- and post-RBC transfusion, to assess tissue oxygenation in minimally-invasive or non-invasive ways. Each day concluded with an open-microphone discussion among the speakers and workshop participants. The workshop presentations and ensuing interdisciplinary discussions highlighted the potential of technologies to combine global “omics” signatures with additional measures (e.g., thenar eminence measurements or various imaging methods) to predict which patients could potentially benefit from a RBC transfusion and whether the ensuing RBC transfusion was effective. The discussions highlighted the need for collaborations across the various disciplines represented at the meeting to leverage existing technologies and to develop novel approaches for assessing RBC transfusion efficacy in various clinical settings. Although the Workshop took place in April, 2018, the concepts described and the ensuing discussions were, perhaps, even more relevant in April, 2020, at the time of writing this manuscript, during the explosive growth of the COVID-19 pandemic in the United States. Thus, issues relating to maintaining and improving tissue oxygenation and perfusion are especially pertinent because of the extensive pulmonary damage resulting from SARS-CoV-2 infection [1], compromises in perfusion caused by thrombotic-embolic phenomena [2], and damage to circulating RBCs, potentially compromising their oxygen-carrying capacity [3]. The severe end organ effects of SARS-CoV-2 infection mandate even more urgency for improving our understanding of tissue perfusion and oxygenation, improve methods for measuring and monitoring them, and develop novel ways of enhancing them

    NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (eg, transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to identify opportunities for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion

    Symptomatic Early Congenital Syphilis: A Common but Forgotten Disease

    Get PDF
    Congenital syphilis is a severe, disabling infection often with grave consequences seen in infants. It occurs due to the transmission of the disease from an infected mother to the unborn infant through the placenta. This long forgotten disease continues to affect pregnant women resulting in perinatal morbidity and mortality. The continuing prevalence of this disease reveals the failure of control measures established for its prevention. We put forth a case of symptomatic congenital syphilis presenting with skeletal manifestations at birth, a rare finding in literature. The report stresses upon the importance of implementing the World Health Organization's recommendation that all pregnant women should be screened for syphilis in the first antenatal visit in the first trimester and again in the late pregnancy

    Comparison of Sample Tubes for the X-band EPR Measurement of an Aqueous Sample: Effects on Reproducibility of Signal Intensities

    No full text
    Reproducibility of the X-band EPR measurement of an aqueous solution sample was compared using three different types of sample tubes, and accuracy of quantitative performance was assessed. A PTEE tubing, a glass capillary and a quartz flat cuvette were compared to get a suitable condition for quantitative measurement. An accurate 0.1 mM water solution of TEMPOL was used as a standard sample. The TEMPOL solution was loaded into one of sample tube, and the sample tube was set in the TE-mode cavity of X-band EPR spectrometer. Two procedures below were tested for reproducibility of repeated measurements. 1) The sample tube in the cavity was washed or renewed every measurement, and measurements were repeated several times with fixed EPR parameters. 2) The sample tubes in the cavity were stayed and repeatedly measured several times. Next, EPR parameters such as sweep speed, time constant, modulation width, and/or microwave power were varied to seek optimum signal intensity. The PTFE tubing showed the best reproducibility when the measurements were repeated with staying the sample tube (the ratio of standard deviation to the averaged signal intensity; SD/AV = 0.0058). When the sample and sample tube was renewed every measurement, variation of signal intensity became larger (SD/AV = 0.0333). The glass capillary had the best reproducibility in both procedures 1 and 2 (SD/AV = 0.0104 and 0.0036, respectively). The signal reproducibility of the flat cuvette was relatively low (SD/AV = 0.0400 and 0.0690 for procedures 1 and 2, respectively). However, the flat cuvette gave the largest signal intensity when the loaded volume of the sample was the identical. In conclusion, the best quantitative performance of the X-band EPR spectroscopy for a liquid sample was obtained when the measurements are carried out with the capillary

    Pulsed electron paramagnetic resonance imaging: Applications in the studies of tumor physiology

    No full text
    Significance:Electron Paramagnetic Resonance imaging (EPRI) is a powerful technique capable of generating images of tissue oxygenation using exogenous paramagnetic probes such as trityl radicals and nitroxyl radicals. Using principles similar to Magnetic Resonance Imaging (MRI) with field gradients, the spatial distribution of the paramagnetic probecan be generated and from its spectral features, spatial maps of oxygen can be obtained from live objects. In this review, the two methods of signal acquisition, image formation/reconstruction will be described. The probes used and its application to study tumor physiology and monitor treatment response with chemotherapy drugs in mouse models of human cancer will be summarized.Recent Advances: By implementing phase encoding/Fourier reconstruction in EPRI in time-domain mode, the frequency contribution to the spatial resolution was avoided and improved images can be obtained. The highresolution EPRI revealed the pO2 change in tumor, which was useful to detect and evaluate the effects of various antitumor therapies. The coregistration with other imaging modalities provided a better understanding of hypoxia related alteration in physiology.Critical Issues: The high power of EPR irradiation and toxicity profile of radical probes are the main obstacles for clinical application. The improvement of pulse sequence may lower the risk.Future Directions:Pulsed EPR oximetry will be a powerfultool to research various disease involving hypoxia such as cancer, ischemic heart diseases, stroke, and diabetes. By optimizing radical probes, it can also be applied for various other purposes such as detecting local acid-base balance or oxidative stress

    Metabolic Landscape of a Genetically Engineered Mouse Model of IDH1 Mutant Glioma

    No full text
    Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients
    corecore