3,164 research outputs found
Electrocardiogram of the Mixmaster Universe
The Mixmaster dynamics is revisited in a new light as revealing a series of
transitions in the complex scale invariant scalar invariant of the Weyl
curvature tensor best represented by the speciality index , which
gives a 4-dimensional measure of the evolution of the spacetime independent of
all the 3-dimensional gauge-dependent variables except for the time used to
parametrize it. Its graph versus time characterized by correlated isolated
pulses in its real and imaginary parts corresponding to curvature wall
collisions serves as a sort of electrocardiogram of the Mixmaster universe,
with each such pulse pair arising from a single circuit or ``complex pulse''
around the origin in the complex plane. These pulses in the speciality index
and their limiting points on the real axis seem to invariantly characterize
some of the so called spike solutions in inhomogeneous cosmology and should
play an important role as a gauge invariant lens through which to view current
investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex
figures; added example of a transient true spike to contrast with the
permanent true spike example from the Lim family of true spike solutions;
remarks in introduction and conclusion adjusted and toned down; minor
adjustments to the remaining tex
A Multi-Objective Improved Hybrid Butterfly Artificial Gorilla Troop Optimizer for Node Localization in Wireless Sensor Groundwater Monitoring Networks
Wireless sensor networks have gained significant attention in recent years due to their wide range of applications in environmental monitoring, surveillance, and other fields. The design of a groundwater quality and quantity monitoring network is an important aspect in aquifer restoration and the prevention of groundwater pollution and overexploitation. Moreover, the development of a novel localization strategy project in wireless sensor groundwater networks aims to address the challenge of optimizing sensor location in relation to the monitoring process so as to extract the maximum quantity of information with the minimum cost. In this study, the improved hybrid butterfly artificial gorilla troop optimizer (iHBAGTO) technique is applied to optimize nodes’ position and the analysis of the path loss delay, and the RSS is calculated. The hybrid of Butterfly Artificial Intelligence and an artificial gorilla troop optimizer is used in the multi-functional derivation and the convergence rate to produce the designed data localization. The proposed iHBAGTO algorithm demonstrated the highest convergence rate of 99.6%, and it achieved the lowest average error of 4.8; it consistently had the lowest delay of 13.3 ms for all iteration counts, and it has the highest path loss values of 8.2 dB, with the lowest energy consumption value of 0.01 J, and has the highest received signal strength value of 86% for all iteration counts. Overall, the Proposed iHBAGTO algorithm outperforms other algorithms
Excised acoustic black holes: the scattering problem in the time domain
The scattering process of a dynamic perturbation impinging on a draining-tub
model of an acoustic black hole is numerically solved in the time domain.
Analogies with real black holes of General Relativity are explored by using
recently developed mathematical tools involving finite elements methods,
excision techniques, and constrained evolution schemes for strongly hyperbolic
systems. In particular it is shown that superradiant scattering of a
quasi-monochromatic wavepacket can produce strong amplification of the signal,
offering the possibility of a significant extraction of rotational energy at
suitable values of the angular frequency of the vortex and of the central
frequency of the wavepacket. The results show that theoretical tools recently
developed for gravitational waves can be brought to fruition in the study of
other problems in which strong anisotropies are present.Comment: 8 pages, 9 figure
Neutrino current in a gravitational plane wave collision background
The behaviour of a massless Dirac field on a general spacetime background
representing two colliding gravitational plane waves is discussed in the
Newman-Penrose formalism. The geometrical properties of the neutrino current
are analysed and explicit results are given for the special Ferrari-Ibanez
solution.Comment: 17 pages, 6 Postscript figures, accepted by International Journal of
Modern Physics
development of a deep convolutional neural network to predict grading of canine meningiomas from magnetic resonance images
Abstract An established deep neural network (DNN) based on transfer learning and a newly designed DNN were tested to predict the grade of meningiomas from magnetic resonance (MR) images in dogs and to determine the accuracy of classification of using pre- and post-contrast T1-weighted (T1W), and T2-weighted (T2W) MR images. The images were randomly assigned to a training set, a validation set and a test set, comprising 60%, 10% and 30% of images, respectively. The combination of DNN and MR sequence displaying the highest discriminating accuracy was used to develop an image classifier to predict the grading of new cases. The algorithm based on transfer learning using the established DNN did not provide satisfactory results, whereas the newly designed DNN had high classification accuracy. On the basis of classification accuracy, an image classifier built on the newly designed DNN using post-contrast T1W images was developed. This image classifier correctly predicted the grading of 8 out of 10 images not included in the data set
Use of the Natural Circulation Flow Map for Natural Circulation Systems Evaluation
The aim of this paper is to collect and resume the work done to build and develop, at the University of Pisa, an engineering tool related to the natural circulation. After a brief description of the different loop flow regimes in single phase and two phase, the derivation of a suitable tool to judge the NC performance in a generic system is presented. Finally, an extensive comparison among the NC performance of various nuclear power plants having different design is done to show a practical application of the NC flow map
Evidence Evaluation: Measure Z Corresponds to Human Utility Judgments Better than Measure L and Optimal-Experimental-Design Models
Evidence evaluation is a crucial process in many human activities, spanning from medical diagnosis to impression formation. The present experiments investigated which, if any, normative model best conforms to people’s intuition about the value of the obtained evidence. Psychologists, epistemologists, and philosophers of science have proposed several models to account for people’s intuition about the utility of the obtained evidence with respect either to a focal hypothesis or to a constellation of hypotheses. We pitted against each other the so called optimal-experimental-design models (i.e., Bayesian diagnosticity, log10 diagnosticity, information gain, Kullback-Leibler distance, probability gain, and impact) and measures L and Z to compare their ability to describe humans’ intuition about the value of the obtained evidence. Participants received words-and-numbers scenarios concerning two hypotheses and binary features. They were asked to evaluate the utility of “yes” and “no” answers to questions about some features possessed in different proportions (i.e., the likelihoods) by two types of extraterrestrial creatures (corresponding to two mutually exclusive and exhaustive hypotheses). Participants evaluated either how an answer was helpful or how an answer decreased/increased their beliefs with respect either to a single hypothesis or to both hypotheses. We fitted mixed-effects models and we used the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) values to compare the competing models of the value of the obtained evidence. Overall, the experiments showed that measure Z was the best-fitting model of participants’ judgments of the value of obtained answers. We discussed the implications for the human hypothesis-evaluation process
- …