402 research outputs found

    Transient growth in the flow past a three-dimensional smooth roughness element

    Get PDF
    This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. Amplification mechanisms are described which can bypass the asymptotical growth of Tollmien–Schlichting waves. Smooth axisymmetric roughness elements of different height have been studied, at different Reynolds numbers. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can localize the optimal disturbance characterizing the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds numbers, a strong amplification mechanism has been recovered, inducing an increase of several orders of magnitude of the energy gain with respect to the Blasius case. In particular, the highest value of the energy gain is obtained for an initial varicose perturbation, differently to what found for a streaky parallel flow. Optimal varicose perturbations grow very rapidly by transporting the strong wall-normal shear of the base flow, which is localized in the wake of the bump. Such optimal disturbances are found to lead to transition for initial energies and amplitudes considerably smaller than sinuous optimal ones, inducing hairpin vortices downstream of the roughness element

    Simplified model of offshore Airborne Wind Energy Converters

    Get PDF
    Airborne Wind Energy Converters (AWECs) are promising devices that, thanks to tethered airborne systems, are able to harvest energy of winds blowing at an altitude which is not reachable by traditional wind turbines. This paper is meant to provide an analysis and a preliminary evaluation of an AWEC installed on a floating offshore platform. A minimum complexity dynamic model is developed including a moored heaving platform coupled with the dynamics of an AWEC in steady crosswind flight. A numerical case study is presented through the analysis of different geometrical sizes for the platform and for the airborne components. The results show that offshore AWECs are theoretically viable and they may also be more efficient than grounded devices by taking advantage of a small amount of additionally harvested power from ocean waves

    Airborne Wind Energy Systems: A review of the technologies

    Get PDF
    Among novel technologies for producing electricity from renewable resources, a new class of wind energy converters has been conceived under the name of Airborne Wind Energy Systems (AWESs). This new generation of systems employs flying tethered wings or aircraft in order to reach winds blowing at atmosphere layers that are inaccessible by traditional wind turbines. Research on AWESs started in the mid seventies, with a rapid acceleration in the last decade. A number of systems based on radically different concepts have been analyzed and tested. Several prototypes have been developed all over the world and the results from early experiments are becoming available. This paper provides a review of the different technologies that have been conceived to harvest the energy of high-altitude winds, specifically including prototypes developed by universities and companies. A classification of such systems is proposed on the basis of their general layout and architecture. The focus is set on the hardware architecture of systems that have been demonstrated and tested in real scenarios. Promising solutions that are likely to be implemented in the close future are also considered

    Experimental characterization of a new class of polymeric-wire coiled transducers

    Get PDF
    The recent discovery of a new kind of thermo-Active coiled polymeric wires has opened new perspectives for the implementation of a novel class of actuators that can be easily and effectively manufactured using low-cost materials such as sewing threads or finishing lines. These new devices feature large displacements in response to temperature variations and show very promising performance in terms of energy and power densities. With the aim of providing information and data useful for the future engineering applications of polymeric coiled actuators, a custom experimental test-bench and procedure have been developed and employed to characterise their thermo-mechanical response. Such a test-bench has been designed to run isothermal and isometric tensile tests on a set of sample actuators that are fabricated with a repeatable process. This paper provides technical details on the manufacturing process of such sample actuators and on the design and operation of the test-bench. Preliminary experimental results are finally reported

    Quantum symmetrization transition in superconducting sulfur hydride from quantum Monte Carlo and path integral molecular dynamics

    Full text link
    We study the structural phase transition associated with the highest superconducting critical temperature measured in high-pressure sulfur hydride. A quantitative description of its pressure dependence has been elusive for any \emph{ab initio} theory attempted so far, raising questions on the actual mechanism driving the transition. Here, we reproduce the critical pressure of the hydrogen bond symmetrization in the Im3ˉ\bar{3}m structure, in agreement with experimental data, by combining quantum Monte Carlo simulations for electrons with path integral molecular dynamics for quantum nuclei. For comparison, we also apply the self-consistent harmonic approximation, which underestimates the critical pressure by about 40 GPa even when the most accurate potential energy surface is used, pinpointing the importance of an exact treatment of nuclear quantum effects. They indeed play a major role in a significant reduction (\approx 100 GPa) of the classical transition pressure and in a large isotope shift (\approx 25 GPa) upon hydrogen-to-deuterium substitution

    International Standard Problem No 50 – The University of Pisa contribution

    Get PDF
    The present paper deals with the participation of the University of Pisa in the last International Standard Problem (ISP) focused on system thermal hydraulic, which was led by the Korean Atomic Energy Research Institution (KAERI). The selected test was a Direct Vessel Injection (DVI) line break carried out at the ATLAS facility. University of Pisa participated, together with other eighteen institutions, in both blind and open phase of the analytical exercise pursuing its methodology for developing and qualifying a nodalization. Qualitative and quantitative analysis of the code results have been performed for both ISP-50 phases, the latter adopting the Fast Fourier Transfer Based Method (FFTBM). The experiment has been characterized by three dimensional behavior in downcomer and core region. Even though an attempt to reproduce these phenomena, by developing a fictitious three-dimensional nodalization has been realized, the obtained results were generally acceptable but not fully satisfactory in replicating 3D behavio

    hydrogen embrittlement in advanced high strength steels and ultra high strength steels a new investigation approach

    Get PDF
    Abstract In order to reduce CO2 emissions and fuel consumption, and to respect current environmental norms, the reduction of vehicles weight is a primary target of the automotive industry. Advanced High Strength Steels (AHSS) and Ultra High Strength Steel (UHSS), which present excellent mechanical properties, are consequently increasingly used in vehicle manufacturing. The increased strength to mass ratio compensates the higher cost per kg, and AHSS and UHSS are proving to be cost-effective solutions for the body-in-white of mass market products. In particular, aluminized boron steel can be formed in complex shapes with press hardening processes, acquiring high strength without distortion, and increasing protection from crashes. On the other hand, its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and, at the same time, the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating, thus increasing the diffusible hydrogen content. However, after cooling, the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production, or, even worse, to the failure in its operation, diffusible hydrogen absorbed in the component needs to be monitored during the production process. For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel, one of the HELIOS innovative instruments was used, HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell, HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels, semi-products or products, avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training. Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS, one before hot stamping/ quenching, and one after hot stamping, suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen

    Acetyl-cholinesterase-inhibitors slow cognitive decline and decrease overall mortality in older patients with dementia

    Get PDF
    We evaluated the effect of Acetyl-cholinesterase-inhibitors (AChEIs) on cognitive decline and overall survival in a large sample of older patients with late onset Alzheimer's disease (LOAD), vascular dementia (VD) or Lewy body disease (LBD) from a real world setting. Patients with dementia enrolled between 2005 and 2020 by the "Alzheimer's Disease Research Centers" were analysed; the mean follow-up period was 7.9 years. A 1:1 propensity score matching was performed generating a cohort of 1.572 patients (786 treated [AChEIs +] and 786 not treated [AChEIs-] with AChEIs. The MMSE score was almost stable during the first 6 years of follow up in AChEIs + and then declined, while in AChEIs- it progressively declined so that at the end of follow-up (13.6 years) the average decrease in MMSE was 10.8 points in AChEIs- compared with 5.4 points in AChEIs + (p < 0.001). This trend was driven by LOAD (Delta-MMSE:-10.8 vs. -5.7 points; p < 0.001), although a similar effect was observed in VD (Delta-MMSE:-11.6 vs. -8.8; p < 0.001). No effect on cognitive status was found in LBD. At multivariate Cox regression analysis (adjusted for age, gender, dependency level and depression) a strong association between AChEIs therapy and lower all-cause mortality was observed (H.R.:0.59; 95%CI: 0.53-0.66); this was confirmed also in analyses separately conducted in LOAD, VD and LBD. Among older people with dementia, treatment with AChEIs was associated with a slower cognitive decline and with reduced mortality, after a mean follow-up of almost eight years. Our data support the effectiveness of AChEIs in older patients affected by these types of dementia
    corecore