165 research outputs found

    Stephen Henighan. When Words Deny the World: The Reshaping of Canadian Writing.

    Get PDF

    Preface

    Get PDF

    Rajeswari Sunder Rajan. Real and Imagined Women: Gender, Culture and Postcolonialism.

    Get PDF

    The Year That Was

    Get PDF
    AUSTRALIA 1989, CANADA 1988, INDIA 1988, INDIA 1989, PAKISTAN 1988, PAKISTAN 1989, SRI LANKA 1989, SOUTH AFRICA 1987

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Sensitivity and uncertainty analysis of two human atrial cardiac cell models using gaussian process emulators

    Get PDF
    Biophysically detailed cardiac cell models reconstruct the action potential and calcium dynamics of cardiac myocytes. They aim to capture the biophysics of current flow through ion channels, pumps, and exchangers in the cell membrane, and are highly detailed. However, the relationship between model parameters and model outputs is difficult to establish because the models are both complex and non-linear. The consequences of uncertainty and variability in model parameters are therefore difficult to determine without undertaking large numbers of model evaluations. The aim of the present study was to demonstrate how sensitivity and uncertainty analysis using Gaussian process emulators can be used for a systematic and quantitive analysis of biophysically detailed cardiac cell models. We selected the Courtemanche and Maleckar models of the human atrial action potential for analysis because these models describe a similar set of currents, with different formulations. In our approach Gaussian processes emulate the main features of the action potential and calcium transient. The emulators were trained with a set of design data comprising samples from parameter space and corresponding model outputs, initially obtained from 300 model evaluations. Variance based sensitivity indices were calculated using the emulators, and first order and total effect indices were calculated for each combination of parameter and output. The differences between the first order and total effect indices indicated that the effect of interactions between parameters was small. A second set of emulators were then trained using a new set of design data with a subset of the model parameters with a sensitivity index of more than 0.1 (10%). This second stage analysis enabled comparison of mechanisms in the two models. The second stage sensitivity indices enabled the relationship between the L-type Ca2+ current and the action potential plateau to be quantified in each model. Our quantitative analysis predicted that changes in maximum conductance of the ultra-rapid K+ channel IKur would have opposite effects on action potential duration in the two models, and this prediction was confirmed by additional simulations. This study has demonstrated that Gaussian process emulators are an effective tool for sensitivity and uncertainty analysis of biophysically detailed cardiac cell models

    Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

    Get PDF
    Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study

    RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    Get PDF
    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway
    corecore