12 research outputs found

    Finiteness and Dual Variables for Lorentzian Spin Foam Models

    Full text link
    We describe here some new results concerning the Lorentzian Barrett-Crane model, a well-known spin foam formulation of quantum gravity. Generalizing an existing finiteness result, we provide a concise proof of finiteness of the partition function associated to all non-degenerate triangulations of 4-manifolds and for a class of degenerate triangulations not previously shown. This is accomplished by a suitable re-factoring and re-ordering of integration, through which a large set of variables can be eliminated. The resulting formulation can be interpreted as a ``dual variables'' model that uses hyperboloid variables associated to spin foam edges in place of representation variables associated to faces. We outline how this method may also be useful for numerical computations, which have so far proven to be very challenging for Lorentzian spin foam models.Comment: 15 pages, 1 figur

    Lorentzian spin foam amplitudes: graphical calculus and asymptotics

    Full text link
    The amplitude for the 4-simplex in a spin foam model for quantum gravity is defined using a graphical calculus for the unitary representations of the Lorentz group. The asymptotics of this amplitude are studied in the limit when the representation parameters are large, for various cases of boundary data. It is shown that for boundary data corresponding to a Lorentzian simplex, the asymptotic formula has two terms, with phase plus or minus the Lorentzian signature Regge action for the 4-simplex geometry, multiplied by an Immirzi parameter. Other cases of boundary data are also considered, including a surprising contribution from Euclidean signature metrics.Comment: 30 pages. v2: references now appear. v3: presentation greatly improved (particularly diagrammatic calculus). Definition of "Regge state" now the same as in previous work; signs change in final formula as a result. v4: two references adde

    Numerical indications on the semiclassical limit of the flipped vertex

    Full text link
    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced "flipped" vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.Comment: 4 pages, 8 figure
    corecore