12 research outputs found
Finiteness and Dual Variables for Lorentzian Spin Foam Models
We describe here some new results concerning the Lorentzian Barrett-Crane
model, a well-known spin foam formulation of quantum gravity. Generalizing an
existing finiteness result, we provide a concise proof of finiteness of the
partition function associated to all non-degenerate triangulations of
4-manifolds and for a class of degenerate triangulations not previously shown.
This is accomplished by a suitable re-factoring and re-ordering of integration,
through which a large set of variables can be eliminated. The resulting
formulation can be interpreted as a ``dual variables'' model that uses
hyperboloid variables associated to spin foam edges in place of representation
variables associated to faces. We outline how this method may also be useful
for numerical computations, which have so far proven to be very challenging for
Lorentzian spin foam models.Comment: 15 pages, 1 figur
Lorentzian spin foam amplitudes: graphical calculus and asymptotics
The amplitude for the 4-simplex in a spin foam model for quantum gravity is
defined using a graphical calculus for the unitary representations of the
Lorentz group. The asymptotics of this amplitude are studied in the limit when
the representation parameters are large, for various cases of boundary data. It
is shown that for boundary data corresponding to a Lorentzian simplex, the
asymptotic formula has two terms, with phase plus or minus the Lorentzian
signature Regge action for the 4-simplex geometry, multiplied by an Immirzi
parameter. Other cases of boundary data are also considered, including a
surprising contribution from Euclidean signature metrics.Comment: 30 pages. v2: references now appear. v3: presentation greatly
improved (particularly diagrammatic calculus). Definition of "Regge state"
now the same as in previous work; signs change in final formula as a result.
v4: two references adde
Numerical indications on the semiclassical limit of the flipped vertex
We introduce a technique for testing the semiclassical limit of a quantum
gravity vertex amplitude. The technique is based on the propagation of a
semiclassical wave packet. We apply this technique to the newly introduced
"flipped" vertex in loop quantum gravity, in order to test the intertwiner
dependence of the vertex. Under some drastic simplifications, we find very
preliminary, but surprisingly good numerical evidence for the correct classical
limit.Comment: 4 pages, 8 figure