2,367 research outputs found

    Master-modes in 3D turbulent channel flow

    Full text link
    Turbulent flow fields can be expanded into a series in a set of basic functions. The terms of such series are often called modes. A master- (or determining) mode set is a subset of these modes, the time history of which uniquely determines the time history of the entire turbulent flow provided that this flow is developed. In the present work the existence of the master-mode-set is demonstrated numerically for turbulent channel flow. The minimal size of a master-mode set and the rate of the process of the recovery of the entire flow from the master-mode set history are estimated. The velocity field corresponding to the minimal master-mode set is found to be a good approximation for mean velocity in the entire flow field. Mean characteristics involving velocity derivatives deviate in a very close vicinity to the wall, while master-mode two-point correlations exhibit unrealistic oscillations. This can be improved by using a larger than minimal master-mode set. The near-wall streaks are found to be contained in the velocity field corresponding to the minimal master-mode set, and the same is true at least for the large-scale part of the longitudinal vorticity structure. A database containing the time history of a master-mode set is demonstrated to be an efficient tool for investigating rare events in turbulent flows. In particular, a travelling-wave-like object was identified on the basis of the analysis of the database. Two master-mode-set databases of the time history of a turbulent channel flow are made available online at http://www.dnsdata.afm.ses.soton.ac.uk/. The services provided include the facility for the code uploaded by a user to be run on the server with an access to the data

    Computation of the magnetostatic interaction between linearly magnetized polyhedrons

    Full text link
    In this paper we present a method to accurately compute the energy of the magnetostatic interaction between linearly (or uniformly, as a special case) magnetized polyhedrons. The method has applications in finite element micromagnetics, or more generally in computing the magnetostatic interaction when the magnetization is represented using the finite element method (FEM). The magnetostatic energy is described by a six-fold integral that is singular when the interaction regions overlap, making direct numerical evaluation problematic. To resolve the singularity, we evaluate four of the six iterated integrals analytically resulting in a 2d integral over the surface of a polyhedron, which is nonsingular and can be integrated numerically. This provides a more accurate and efficient way of computing the magnetostatic energy integral compared to existing approaches. The method was developed to facilitate the evaluation of the demagnetizing interaction between neighouring elements in finite-element micromagnetics and provides a possibility to compute the demagnetizing field using efficient fast multipole or tree code algorithms

    Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    Full text link
    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetization tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii)

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed
    corecore