1,466 research outputs found
Geometrical Description of Quantum Mechanics - Transformations and Dynamics
In this paper we review a proposed geometrical formulation of quantum
mechanics. We argue that this geometrization makes available mathematical
methods from classical mechanics to the quantum frame work. We apply this
formulation to the study of separability and entanglement for states of
composite quantum systems.Comment: 22 pages, to be published in Physica Script
Essential self-adjointness in one-loop quantum cosmology
The quantization of closed cosmologies makes it necessary to study squared
Dirac operators on closed intervals and the corresponding quantum amplitudes.
This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which
  corrects section 
Optimal sequential fingerprinting: Wald vs. Tardos
We study sequential collusion-resistant fingerprinting, where the
fingerprinting code is generated in advance but accusations may be made between
rounds, and show that in this setting both the dynamic Tardos scheme and
schemes building upon Wald's sequential probability ratio test (SPRT) are
asymptotically optimal. We further compare these two approaches to sequential
fingerprinting, highlighting differences between the two schemes. Based on
these differences, we argue that Wald's scheme should in general be preferred
over the dynamic Tardos scheme, even though both schemes have their merits. As
a side result, we derive an optimal sequential group testing method for the
classical model, which can easily be generalized to different group testing
models.Comment: 12 pages, 10 figure
Pseudospectral Calculation of the Wavefunction of Helium and the Negative Hydrogen Ion
We study the numerical solution of the non-relativistic Schr\"{o}dinger
equation for two-electron atoms in ground and excited S-states using
pseudospectral (PS) methods of calculation. The calculation achieves
convergence rates for the energy, Cauchy error in the wavefunction, and
variance in local energy that are exponentially fast for all practical
purposes. The method requires three separate subdomains to handle the
wavefunction's cusp-like behavior near the two-particle coalescences. The use
of three subdomains is essential to maintaining exponential convergence. A
comparison of several different treatments of the cusps and the semi-infinite
domain suggest that the simplest prescription is sufficient. For many purposes
it proves unnecessary to handle the logarithmic behavior near the
three-particle coalescence in a special way. The PS method has many virtues: no
explicit assumptions need be made about the asymptotic behavior of the
wavefunction near cusps or at large distances, the local energy is exactly
equal to the calculated global energy at all collocation points, local errors
go down everywhere with increasing resolution, the effective basis using
Chebyshev polynomials is complete and simple, and the method is easily
extensible to other bound states. This study serves as a proof-of-principle of
the method for more general two- and possibly three-electron applications.Comment: 23 pages, 20 figures, 2 tables, Final refereed version - Some
  references added, some stylistic changes, added paragraph to matrix methods
  section, added last sentence to abstract
Gravothermal oscillations in two-component models of star clusters
In this paper, gravothermal oscillations are investigated in two-component
clusters with a range of different stellar mass ratios and total component mass
ratios. The critical number of stars at which gravothermal oscillations first
appeared is found using a gas code. The nature of the oscillations is
investigated and it is shown that the oscillations can be understood by
focusing on the behaviour of the heavier component, because of mass
segregation. It is argued that, during each oscillation, the re-collapse of the
cluster begins at larger radii while the core is still expanding. This
re-collapse can halt and reverse a gravothermally driven expansion. This
material outside the core contracts because it is losing energy both to the
cool expanding core and to the material at larger radii. The core collapse
times for each model are also found and discussed. For an appropriately chosen
case, direct N -body runs were carried out, in order to check the results
obtained from the gas model, including evidence of the gravothermal nature of
the oscillations and the temperature inversion that drives the expansion.Comment: 13 pages, 18 figures and 8 tables. Accepted for publication in MNRA
Quantum Probes of Spacetime Singularities
It is shown that there are static spacetimes with timelike curvature
singularities which appear completely nonsingular when probed with quantum test
particles. Examples include extreme dilatonic black holes and the fundamental
string solution. In these spacetimes, the dynamics of quantum particles is well
defined and uniquely determined.Comment: 12 pages, RevTeX, no figures, A few breif comments added and typos
  correcte
QUANTIZATION OF A CLASS OF PIECEWISE AFFINE TRANSFORMATIONS ON THE TORUS
We present a unified framework for the quantization of a family of discrete
dynamical systems of varying degrees of "chaoticity". The systems to be
quantized are piecewise affine maps on the two-torus, viewed as phase space,
and include the automorphisms, translations and skew translations. We then
treat some discontinuous transformations such as the Baker map and the
sawtooth-like maps. Our approach extends some ideas from geometric quantization
and it is both conceptually and calculationally simple.Comment: no. 28 pages in AMSTE
Obstruction Results in Quantization Theory
We define the quantization structures for Poisson algebras necessary to
generalise Groenewold and Van Hove's result that there is no consistent
quantization for the Poisson algebra of Euclidean phase space. Recently a
similar obstruction was obtained for the sphere, though surprising enough there
is no obstruction to the quantization of the torus. In this paper we want to
analyze the circumstances under which such obstructions appear. In this context
we review the known results for the Poisson algebras of Euclidean space, the
sphere and the torus.Comment: 34 pages, Latex. To appear in J. Nonlinear Scienc
Symplectic connections and Fedosov's quantization on supermanifolds
A (biased and incomplete) review of the status of the theory of symplectic
connections on supermanifolds is presented. Also, some comments regarding
Fedosov's technique of quantization are made.Comment: Submitted to J. of Phys. Conf. Se
Spectral properties on a circle with a singularity
We investigate the spectral and symmetry properties of a quantum particle
moving on a circle with a pointlike singularity (or point interaction). We find
that, within the U(2) family of the quantum mechanically allowed distinct
singularities, a U(1) equivalence (of duality-type) exists, and accordingly the
space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus.
We explore the relationship of special subfamilies of the U(2) family to
corresponding symmetries, and identify the singularities that admit an N = 2
supersymmetry. Subfamilies that are distinguished in the spectral properties or
the WKB exactness are also pointed out. The spectral and symmetry properties
are also studied in the context of the circle with two singularities, which
provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update
- …
