1,466 research outputs found

    Geometrical Description of Quantum Mechanics - Transformations and Dynamics

    Full text link
    In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of separability and entanglement for states of composite quantum systems.Comment: 22 pages, to be published in Physica Script

    Essential self-adjointness in one-loop quantum cosmology

    Full text link
    The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which corrects section

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Pseudospectral Calculation of the Wavefunction of Helium and the Negative Hydrogen Ion

    Full text link
    We study the numerical solution of the non-relativistic Schr\"{o}dinger equation for two-electron atoms in ground and excited S-states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wavefunction, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wavefunction's cusp-like behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence. A comparison of several different treatments of the cusps and the semi-infinite domain suggest that the simplest prescription is sufficient. For many purposes it proves unnecessary to handle the logarithmic behavior near the three-particle coalescence in a special way. The PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wavefunction near cusps or at large distances, the local energy is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to other bound states. This study serves as a proof-of-principle of the method for more general two- and possibly three-electron applications.Comment: 23 pages, 20 figures, 2 tables, Final refereed version - Some references added, some stylistic changes, added paragraph to matrix methods section, added last sentence to abstract

    Gravothermal oscillations in two-component models of star clusters

    Full text link
    In this paper, gravothermal oscillations are investigated in two-component clusters with a range of different stellar mass ratios and total component mass ratios. The critical number of stars at which gravothermal oscillations first appeared is found using a gas code. The nature of the oscillations is investigated and it is shown that the oscillations can be understood by focusing on the behaviour of the heavier component, because of mass segregation. It is argued that, during each oscillation, the re-collapse of the cluster begins at larger radii while the core is still expanding. This re-collapse can halt and reverse a gravothermally driven expansion. This material outside the core contracts because it is losing energy both to the cool expanding core and to the material at larger radii. The core collapse times for each model are also found and discussed. For an appropriately chosen case, direct N -body runs were carried out, in order to check the results obtained from the gas model, including evidence of the gravothermal nature of the oscillations and the temperature inversion that drives the expansion.Comment: 13 pages, 18 figures and 8 tables. Accepted for publication in MNRA

    Quantum Probes of Spacetime Singularities

    Get PDF
    It is shown that there are static spacetimes with timelike curvature singularities which appear completely nonsingular when probed with quantum test particles. Examples include extreme dilatonic black holes and the fundamental string solution. In these spacetimes, the dynamics of quantum particles is well defined and uniquely determined.Comment: 12 pages, RevTeX, no figures, A few breif comments added and typos correcte

    QUANTIZATION OF A CLASS OF PIECEWISE AFFINE TRANSFORMATIONS ON THE TORUS

    Full text link
    We present a unified framework for the quantization of a family of discrete dynamical systems of varying degrees of "chaoticity". The systems to be quantized are piecewise affine maps on the two-torus, viewed as phase space, and include the automorphisms, translations and skew translations. We then treat some discontinuous transformations such as the Baker map and the sawtooth-like maps. Our approach extends some ideas from geometric quantization and it is both conceptually and calculationally simple.Comment: no. 28 pages in AMSTE

    Obstruction Results in Quantization Theory

    Full text link
    We define the quantization structures for Poisson algebras necessary to generalise Groenewold and Van Hove's result that there is no consistent quantization for the Poisson algebra of Euclidean phase space. Recently a similar obstruction was obtained for the sphere, though surprising enough there is no obstruction to the quantization of the torus. In this paper we want to analyze the circumstances under which such obstructions appear. In this context we review the known results for the Poisson algebras of Euclidean space, the sphere and the torus.Comment: 34 pages, Latex. To appear in J. Nonlinear Scienc

    Symplectic connections and Fedosov's quantization on supermanifolds

    Full text link
    A (biased and incomplete) review of the status of the theory of symplectic connections on supermanifolds is presented. Also, some comments regarding Fedosov's technique of quantization are made.Comment: Submitted to J. of Phys. Conf. Se

    Spectral properties on a circle with a singularity

    Full text link
    We investigate the spectral and symmetry properties of a quantum particle moving on a circle with a pointlike singularity (or point interaction). We find that, within the U(2) family of the quantum mechanically allowed distinct singularities, a U(1) equivalence (of duality-type) exists, and accordingly the space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus. We explore the relationship of special subfamilies of the U(2) family to corresponding symmetries, and identify the singularities that admit an N = 2 supersymmetry. Subfamilies that are distinguished in the spectral properties or the WKB exactness are also pointed out. The spectral and symmetry properties are also studied in the context of the circle with two singularities, which provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update
    corecore