65 research outputs found
Energy loss and thermalization of heavy quarks in a strongly-coupled plasma
Using the AdS/CFT correspondence, we compute the medium-induced energy loss
of a decelerating heavy quark moving through a strongly-coupled supersymmetric
Yang Mills plasma. In the regime where the deceleration is small, a
perturbative calculation is possible and we obtain the first two corrections to
the energy-loss rate of a heavy quark with constant velocity. The
thermalization of the heavy quark is also discussed.Comment: 4 pages, no figures, Proceedings of the 21st International Conference
on Ultra-Relativistic Nucleus Nucleus Collisions (QM09), Knoxville, USA,
March 30-April 4 200
Back reaction effects on the dynamics of heavy probes in heavy quark cloud
We holographically study the effect of back reaction on the hydrodynamical
properties of strongly coupled super Yang-Mills (SYM) thermal
plasma. The back reaction we consider arises from the presence of static heavy
quarks uniformly distributed over SYM plasma. In order to
study the hydrodynamical properties, we use heavy quark as well as heavy
quark-antiquark bound state as probes and compute the jet quenching parameter,
screening length and binding energy. We also consider the rotational dynamics
of heavy probe quark in the back-reacted plasma and analyse associated energy
loss. We observe that the presence of back reaction enhances the energy-loss in
the thermal plasma. Finally, we show that there is no effect of angular drag on
the rotational motion of quark-antiquark bound state probing the back reacted
thermal plasma.Comment: 29 pages, 21 figure
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Moving Defects in AdS/CFT
We study defects of various dimensions moving through Anti-de Sitter space.
Using the AdS/CFT correspondence this allows us to probe aspects of the dual
quantum field theory. We focus on the energy loss experienced by these defects
as they move through the CFT plasma. We find that the behavior of these
physical quantities is governed by induced world-volume horizons. We identify
world-volume analogs for several gravitational phenomena including black holes,
the Hawking-Page phase transition and expanding cosmological horizons.Comment: 24 pages, 7 figures. Version 2 contains two added reference
The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling
We determine the gluonic field configuration sourced by a heavy quark
undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and
large number of colors. More specifically, we compute the expectation value of
the operator tr[F^2+...] in the presence of such a quark, by means of the
AdS/CFT correspondence. Our results for this observable show that signals
propagate without temporal broadening, just as was found for the expectation
value of the energy density in recent work by Hatta et al. We attempt to shed
some additional light on the origin of this feature, and propose a different
interpretation for its physical significance. As an application of our general
results, we examine when the quark undergoes oscillatory motion,
uniform circular motion, and uniform acceleration. Via the AdS/CFT
correspondence, all of our results are pertinent to any conformal field theory
in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected
typo, version to appear in JHE
Drag force in a strongly coupled anisotropic plasma
We calculate the drag force experienced by an infinitely massive quark
propagating at constant velocity through an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We find that the gluon cloud trailing
behind the quark is generally misaligned with the quark velocity, and that the
latter is also misaligned with the force. The drag coefficient can be
larger or smaller than the corresponding isotropic value depending on the
velocity and the direction of motion. In the ultra-relativistic limit we find
that generically . We discuss the conditions under which this
behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Early-Time Energy Loss in a Strongly-Coupled SYM Plasma
We carry out an analytic study of the early-time motion of a quark in a
strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT
correspondence. Our approach extracts the first thermal effects as a small
perturbation of the known quark dynamics in vacuum, using a double expansion
that is valid for early times and for (moderately) ultrarelativistic quark
velocities. The quark is found to lose energy at a rate that differs
significantly from the previously derived stationary/late-time result: it
scales like T^4 instead of T^2, and is associated with a friction coefficient
that is not independent of the quark momentum. Under conditions representative
of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a
few times smaller than its late-time counterpart. Our analysis additionally
leads to thermally-corrected expressions for the intrinsic energy and momentum
of the quark, in which the previously discovered limiting velocity of the quark
is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications.
References added. Version to be published in JHE
Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in
the vacuum of strongly-coupled conformal field theories in various dimensions,
and determine the resulting stochastic fluctuations of the quark trajectory.
From the perspective of an inertial observer, these are quantum fluctuations
induced by the gluonic radiation emitted by the accelerated quark. From the
point of view of the quark itself, they originate from the thermal medium
predicted by the Unruh effect. We scrutinize the relation between these two
descriptions in the gravity side of the correspondence, and show in particular
that upon transforming the conformal field theory from Rindler space to the
open Einstein universe, the acceleration horizon disappears from the boundary
theory but is preserved in the bulk. This transformation allows us to directly
connect our calculation of radiation-induced fluctuations in vacuum with the
analysis by de Boer et al. of the Brownian motion of a quark that is on average
static within a thermal medium. Combining this same bulk transformation with
previous results of Emparan, we are also able to compute the stress-energy
tensor of the Unruh thermal medium.Comment: 1+31 pages; v2: reference adde
- …