65 research outputs found

    Energy loss and thermalization of heavy quarks in a strongly-coupled plasma

    Full text link
    Using the AdS/CFT correspondence, we compute the medium-induced energy loss of a decelerating heavy quark moving through a strongly-coupled supersymmetric Yang Mills plasma. In the regime where the deceleration is small, a perturbative calculation is possible and we obtain the first two corrections to the energy-loss rate of a heavy quark with constant velocity. The thermalization of the heavy quark is also discussed.Comment: 4 pages, no figures, Proceedings of the 21st International Conference on Ultra-Relativistic Nucleus Nucleus Collisions (QM09), Knoxville, USA, March 30-April 4 200

    Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    Get PDF
    We holographically study the effect of back reaction on the hydrodynamical properties of N=4\mathcal{N} = 4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over N=4\mathcal{N} = 4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.Comment: 29 pages, 21 figure

    On the Beaming of Gluonic Fields at Strong Coupling

    Full text link
    We examine the conditions for beaming of the gluonic field sourced by a heavy quark in strongly-coupled conformal field theories, using the AdS/CFT correspondence. Previous works have found that, contrary to naive expectations, it is possible to set up collimated beams of gluonic radiation despite the strong coupling. We show that, on the gravity side of the correspondence, this follows directly (for arbitrary quark motion, and independently of any approximations) from the fact that the string dual to the quark remains unexpectedly close to the AdS boundary whenever the quark moves ultra-relativistically. We also work out the validity conditions for a related approximation scheme that proposed to explain the beaming effect though the formation of shock waves in the bulk fields emitted by the string. We find that these conditions are fulfilled in the case of ultra-relativistic uniform circular motion that motivated the proposal, but unfortunately do not hold for much more general quark trajectories.Comment: 1+33 pages, 2 figure

    Moving Defects in AdS/CFT

    Full text link
    We study defects of various dimensions moving through Anti-de Sitter space. Using the AdS/CFT correspondence this allows us to probe aspects of the dual quantum field theory. We focus on the energy loss experienced by these defects as they move through the CFT plasma. We find that the behavior of these physical quantities is governed by induced world-volume horizons. We identify world-volume analogs for several gravitational phenomena including black holes, the Hawking-Page phase transition and expanding cosmological horizons.Comment: 24 pages, 7 figures. Version 2 contains two added reference

    The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling

    Full text link
    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator tr[F^2+...] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected typo, version to appear in JHE

    Drag force in a strongly coupled anisotropic plasma

    Full text link
    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled N=4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ\mu can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μp\mu \propto p. We discuss the conditions under which this behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference

    Holographic Brownian Motion in Magnetic Environments

    Full text link
    Using the gauge/gravity correspondence, we study the dynamics of a heavy quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills in the presence of a magnetic field and non-commutative Super-Yang-Mills. In the former, our results agree qualitatively with the expected behavior from weakly-coupled theories. In the latter, we propose a Langevin equation that accounts for the effects of non-commutativity and we find new interesting features. The equation resembles the structure of Brownian motion in the presence of a magnetic field and implies that the fluctuations along non-commutative directions are correlated. Moreover, our results show that the viscosity is smaller than the commutative case and that the diffusion properties of the quark are unaffected by non-commutativity. Finally, we compute the random force autocorrelator and verify that the fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly modified in order to better reflect the contents of the paper; footnote 3 and one reference were also added; version accepted for publication in JHE

    Early-Time Energy Loss in a Strongly-Coupled SYM Plasma

    Full text link
    We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T^4 instead of T^2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications. References added. Version to be published in JHE

    Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories

    Full text link
    Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.Comment: 1+31 pages; v2: reference adde
    corecore