4,167 research outputs found
A resource theory of quantum memories and their faithful verification with minimal assumptions
We provide a complete set of game-theoretic conditions equivalent to the
existence of a transformation from one quantum channel into another one, by
means of classically correlated pre/post processing maps only. Such conditions
naturally induce tests to certify that a quantum memory is capable of storing
quantum information, as opposed to memories that can be simulated by
measurement and state preparation (corresponding to entanglement-breaking
channels). These results are formulated as a resource theory of genuine quantum
memories (correlated in time), mirroring the resource theory of entanglement in
quantum states (correlated spatially). As the set of conditions is complete,
the corresponding tests are faithful, in the sense that any non
entanglement-breaking channel can be certified. Moreover, they only require the
assumption of trusted inputs, known to be unavoidable for quantum channel
verification. As such, the tests we propose are intrinsically different from
the usual process tomography, for which the probes of both the input and the
output of the channel must be trusted. An explicit construction is provided and
shown to be experimentally realizable, even in the presence of arbitrarily
strong losses in the memory or detectors.Comment: Addition of a quantitative study of memories as resources, and
reformulated part of the results in that ligh
All bipartite entangled states display some hidden nonlocality
We show that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality
can be demonstrated in a certain kind of Bell experiment for all bipartite
entangled states. Our protocol allows local filtering measurements and involves
shared ancilla states that do not themselves violate CHSH. Our result follows
from two main steps. We first provide a simple characterization of the states
that violate the CHSH-inequality after local filtering operations in terms of
witness-like operators. Second, we prove that for each entangled state
, there exists another state not violating CHSH, such that
violates CHSH. Hence, in this scenario, cannot be
substituted by classical correlations without changing the statistics of the
experiment; we say that is not simulable by classical correlations and
our result is that entanglement is equivalent to non-simulability.Comment: 5 pages, 1 figur
Quantifying multipartite nonlocality via the size of the resource
The generation of (Bell-)nonlocal correlations, i.e., correlations leading to
the violation of a Bell-like inequality, requires the usage of a nonlocal
resource, such as an entangled state. When given a correlation (a collection of
conditional probability distributions) from an experiment or from a theory, it
is desirable to determine the extent to which the participating parties would
need to collaborate nonlocally for its (re)production. Here, we propose to
achieve this via the minimal group size (MGS) of the resource, i.e., the
smallest number of parties that need to share a given type of nonlocal resource
for the above-mentioned purpose. In addition, we provide a general recipe ---
based on the lifting of Bell-like inequalities --- to construct MGS witnesses
for non-signaling resources starting from any given ones. En route to
illustrating the applicability of this recipe, we also show that when
restricted to the space of full-correlation functions, non-signaling resources
are as powerful as unconstrained signaling resources. Explicit examples of
correlations where their MGS can be determined using this recipe and other
numerical techniques are provided.Comment: 8+3 pages, 2 figures, 2 theorems + 1 corollary; comments very
welcomed
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique
Na/beta-alumina/NaAlCl4, Cl2/C circulating cell
A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design
- …