34 research outputs found

    New effective sorbents for purification of aqueous media from technogenic contaminants

    No full text
    Created are the sorbents based on silica gel non-covalently modified with partially hydrogenated heterocyclic compounds (PHHC), containing nitrogen as donor atoms for purification of aqueous media from technogenic contaminants. The investigations show that the modified silica gel is characterized by a sorption capacity relatively higher than that of unmodified one. The sorption degree of metal ions is studied depending on their concentrations, total mineralization and pH value of the solutions. Conditions for selective sorption of microquantities of Eu³⁺ which has been used as chemically identical to ²⁴¹Am are described. Moreover it was shown that PHHC modified silica gel was potential to use as the sorbent to concentrate the Eu³⁺ and Sr²⁺ metal ions with initial concentrations near 1 mg∙L⁻¹ for the quantitative analysis. Also the possible mechanism of metal ion sorption on the developed sorbents was proposed. Remove selecte

    3-Amino-1,2,4-triazolium salts as NHC-proligands: synthesis and postmodification of a new type of amino-functionalized Pd/NHC complexes

    No full text
    Palladium complexes with N-heterocyclic carbene ligands of a new type containing free NH2 group were obtained by direct palladation of 3-amino-1,4-dialkyl-1,2,4-triazolium salts. These amino-functionalized complexes were found to be a versatile platform for postmodification via reactions of the NH2 group with acyl and sulfonyl chlorides

    Pd-PEPPSI complexes based on 1,2,4-triazol-3-ylidene ligands as efficient catalysts in the Suzuki—Miyaura reaction

    No full text
    The palladium complexes of the Pd-PEPPSI type with N-heterocyclic carbenes of the 1,2,4-triazole series were synthesized in 76—99% yields by the reactions of PdCl2 with 1,4-di- alkyl-1,2,4-triazolium salts in pyridine in the presence of KBr or KI as sources of halide ions and tetrabutylammonium salts as phase-transfer catalysts. The obtained complexes can be used as efficient catalysts for the Suzuki—Miyaura cross-coupling and are not inferior to the commercially available Pd-PEPPSI catalysts in activity. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Pd-PEPPSI complexes based on 1,2,4-triazol-3-ylidene ligands as efficient catalysts in the Suzuki—Miyaura reaction

    No full text
    The palladium complexes of the Pd-PEPPSI type with N-heterocyclic carbenes of the 1,2,4-triazole series were synthesized in 76—99% yields by the reactions of PdCl2 with 1,4-di- alkyl-1,2,4-triazolium salts in pyridine in the presence of KBr or KI as sources of halide ions and tetrabutylammonium salts as phase-transfer catalysts. The obtained complexes can be used as efficient catalysts for the Suzuki—Miyaura cross-coupling and are not inferior to the commercially available Pd-PEPPSI catalysts in activity. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki-Heck Reaction

    No full text
    Metal complexes bearing N-heterocyclic carbene (NHC) ligands are typically considered the system of choice for homogeneous catalysis with well-defined molecular active species due to their stable metal-ligand framework. A detailed study involving 19 different Pd-NHC complexes with imidazolium, benzimidazolium, and triazolium ligands has been carried out in the present work and revealed a new mode of operation of metal-NHC systems. The catalytic activity of the studied Pd-NHC systems is predominantly determined by the cleavage of the metal-NHC bond, while the catalyst performance is strongly affected by the stabilization of in situ formed metal clusters. In the present study, the formation of Pd nanoparticles was observed from a broad range of metal complexes with NHC ligands under standard Mizoroki-Heck reaction conditions. A mechanistic analysis revealed two different pathways to connect Pd-NHC complexes to "cocktail"-type catalysis: (i) reductive elimination from a Pd(II) intermediate and the release of NHC-containing byproducts and (ii) dissociation of NHC ligands from Pd intermediates. Metal-NHC systems are ubiquitously applied in modern organic synthesis and catalysis, while the new mode of operation revealed in the present study guides catalyst design and opens a variety of novel opportunities. As shown by experimental studies and theoretical calculations, metal clusters and nanoparticles can be readily formed from M-NHC complexes after formation of new M-C or M-H bonds followed by C-NHC or H-NHC coupling. Thus, a combination of a classical molecular mode of operation and a novel cocktail-type mode of operation, described in the present study, may be anticipated as an intrinsic feature of M-NHC catalytic systems. © 2017 American Chemical Society

    Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines

    No full text
    The behavior of ubiquitously used nickel, palladium, and platinum complexes containing N-heterocyclic carbene ligands was studied in solution in the presence of aliphatic amines. Transformation of M(NHC)X2L complexes readily occurred according to the following reactions: (i) release of the NHC ligand in the form of azolium salt and formation of metal clusters or nanoparticles and (ii) isomerization of mono-NHC complexes M(NHC)X2L to bis-NHC derivatives M(NHC)2X2. Facile cleavage of the M-NHC bond was observed and provided the possibility for fast release of catalytically active NHC-free metal species. Bis-NHC metal complexes M(NHC)2X2 were found to be significantly more stable and represented a molecular reservoir of catalytically active species. Slow decomposition of the bis-NHC complexes by removal of the NHC ligands (also in the form of azolium salts) occurred, generating metal clusters or nanoparticles. The observed combination of dual fast- and slow-release channels is an intrinsic latent opportunity of M/NHC complexes, which balances the activity and durability of a catalytic system. The fast release of catalytically active species from M(NHC)X2L complexes can rapidly initiate catalytic transformation, while the slow release of catalytically active species from M(NHC)2X2 complexes can compensate for degradation of catalytically active species and help to maintain a reliable amount of catalyst. The study clearly shows an outstanding potential of dynamic catalytic systems, where the key roles are played by the lability of the M-NHC framework rather than its stability. © 2018 American Chemical Society

    A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki-Heck Reaction

    No full text
    Metal complexes bearing N-heterocyclic carbene (NHC) ligands are typically considered the system of choice for homogeneous catalysis with well-defined molecular active species due to their stable metal-ligand framework. A detailed study involving 19 different Pd-NHC complexes with imidazolium, benzimidazolium, and triazolium ligands has been carried out in the present work and revealed a new mode of operation of metal-NHC systems. The catalytic activity of the studied Pd-NHC systems is predominantly determined by the cleavage of the metal-NHC bond, while the catalyst performance is strongly affected by the stabilization of in situ formed metal clusters. In the present study, the formation of Pd nanoparticles was observed from a broad range of metal complexes with NHC ligands under standard Mizoroki-Heck reaction conditions. A mechanistic analysis revealed two different pathways to connect Pd-NHC complexes to "cocktail"-type catalysis: (i) reductive elimination from a Pd(II) intermediate and the release of NHC-containing byproducts and (ii) dissociation of NHC ligands from Pd intermediates. Metal-NHC systems are ubiquitously applied in modern organic synthesis and catalysis, while the new mode of operation revealed in the present study guides catalyst design and opens a variety of novel opportunities. As shown by experimental studies and theoretical calculations, metal clusters and nanoparticles can be readily formed from M-NHC complexes after formation of new M-C or M-H bonds followed by C-NHC or H-NHC coupling. Thus, a combination of a classical molecular mode of operation and a novel cocktail-type mode of operation, described in the present study, may be anticipated as an intrinsic feature of M-NHC catalytic systems. © 2017 American Chemical Society

    Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines

    No full text
    The behavior of ubiquitously used nickel, palladium, and platinum complexes containing N-heterocyclic carbene ligands was studied in solution in the presence of aliphatic amines. Transformation of M(NHC)X2L complexes readily occurred according to the following reactions: (i) release of the NHC ligand in the form of azolium salt and formation of metal clusters or nanoparticles and (ii) isomerization of mono-NHC complexes M(NHC)X2L to bis-NHC derivatives M(NHC)2X2. Facile cleavage of the M-NHC bond was observed and provided the possibility for fast release of catalytically active NHC-free metal species. Bis-NHC metal complexes M(NHC)2X2 were found to be significantly more stable and represented a molecular reservoir of catalytically active species. Slow decomposition of the bis-NHC complexes by removal of the NHC ligands (also in the form of azolium salts) occurred, generating metal clusters or nanoparticles. The observed combination of dual fast- and slow-release channels is an intrinsic latent opportunity of M/NHC complexes, which balances the activity and durability of a catalytic system. The fast release of catalytically active species from M(NHC)X2L complexes can rapidly initiate catalytic transformation, while the slow release of catalytically active species from M(NHC)2X2 complexes can compensate for degradation of catalytically active species and help to maintain a reliable amount of catalyst. The study clearly shows an outstanding potential of dynamic catalytic systems, where the key roles are played by the lability of the M-NHC framework rather than its stability. © 2018 American Chemical Society
    corecore