76 research outputs found

    Anisotropic growth of the thiophene-based layer on Si(111)-B

    No full text
    International audienceThe formation of large assemblies on the Si(111)-B surface is discussed with the help of STM simulations and DFT calculations. Although highly regular assemblies of DTB10B along the Si row direction are observed, the existence of two herringbone isomers introduces a lower periodicity within the 2D molecular network. The formation of herringbone units is explained by weak intermolecular interactions while the 1D assembling depends mainly on the interactions of the C10 side chains with the Si(111)-B surface

    Comprendre la cytotoxicité des nanoparticules métalliques

    No full text
    National audienceLe stress oxydant est l’un des processus incriminĂ©s dans la genĂšse de nombreuses maladies, comme les cancers. Ce stress oxydant est caractĂ©risĂ© par la production d’espĂšces oxydantes appelĂ©es ROS (reactive oxygene species), qui peuvent altĂ©rer l’ADN dans les cellules, via deux mĂ©canismes d’échanges d’électrons parfaitement dĂ©crits. Ainsi, pour contrer ce phĂ©nomĂšne, les cellules contiennent certaines molĂ©cules, telles que des catĂ©chols, qui jouent le rĂŽle de systĂšmes efficaces d’auto-dĂ©fense en inhibant la formation des ROS. Les nanoparticules sont suspectĂ©es d’ĂȘtre Ă  l’origine d’un stress oxydant trĂšs agressif. Mais si la toxicitĂ© des nanoparticules d’oxyde mĂ©talliques est expliquĂ©e par les deux mĂ©canismes classiques d’échange d’électrons, le mĂ©canisme d’action des nanoparticules mĂ©talliques reste mĂ©connu alors qu’elles sont pourtant plus toxiques que leurs alter-ego Ă  base d’oxydes. Pour comprendre le rĂŽle de la surface des nanoparticules mĂ©talliques dans la production de ROS, nous avons Ă©tudiĂ© une surface de cuivre interagissant avec une couche molĂ©culaire de catĂ©chol, sous ultra-haut vide. Les observations de molĂ©cules individuelles par microscopie Ă  effet tunnel, par l’analyse Ă  haute rĂ©solution de la composition de chaque molĂ©cule, et par des calculs ab initio, ont rĂ©vĂ©lĂ© le mĂ©canisme permettant la formation des ROS par une surface de cuivre. Nous avons montrĂ© que la surface de cuivre est le siĂšge d’une rĂ©action d’oxydo-rĂ©duction trĂšs particuliĂšre, dit “intramolĂ©culaire”. Les molĂ©cules de catĂ©chol voient leurs fonctions alcool oxydĂ©es alors que d’autres fonctions sont rĂ©duites, grĂące Ă  un transfert d’électrons entre les substituants d’une mĂȘme molĂ©cule. Cette transformation est gouvernĂ©e par l’alignement des niveaux Ă©lectroniques de la surface de cuivre et des molĂ©cules, la surface de cuivre « forçant » la molĂ©cule Ă  se transformer pour permettre son adsorption. Ainsi, la cytotoxicitĂ© des nanoparticules mĂ©talliques semble ĂȘtre expliquĂ©e via ce nouveau mĂ©canisme d’action, mĂȘme si des expĂ©riences in vitro sont nĂ©cessaires pour le confirmer

    Molecular self-assembled networks on silicon surface

    No full text
    International audienceNowadays more than 90% of published results show molecules adsorbed onto metallic or HOPG surfaces. This is explained by the low reactivity between molecules and these surfaces which induce a molecular diffusion and the possibility to observe large and perfect self-assemblies. Nevertheless, there are a real economic and technological interests to develop molecular self-assembled layers onto semiconductors and in particular onto silicon surfaces. Actually, due to the existence of Si dangling bonds which induce a strong interaction between molecules and substrates, the formation of such molecular layers is still a real challenge. To circumvent this problem, we need atomically passivated Si surface. Here, an original unreactive silicon surface is presented: the high boron doped silicon √3x√3-SiB (111) reconstruction. Since 10 years, very amazing results have been obtained showing large and perfect molecular self-assemblies by deposition of home-made and specifically designed aromatic molecules on this silicon surface [See Fig. 1]. The morphology of each supramolecular network is explained by the competition between molecule-moleucle and molecuel-surface interactions [1-4]

    Photochemistry Highlights on On‐Surface Synthesis

    No full text
    International audienceOn‐surface chemistry is a promising way to achieve the bottom‐up construction of covalently‐bonded molecular precursors into extended atomically‐precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. These nanostructures were mainly obtained in ultra‐high vacuum (UHV) on noble metal single‐crystal surfaces by thermal annealing as stimulus to provoke the polymerization with a catalytic role of the surface adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less‐used on surfaces than in solution. In this minireview, we discuss the photo‐induced on‐surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces, which are characterized by scanning probe microscopies

    On-Surface Chemistry on Low-Reactive Surfaces

    No full text
    International audience<span style="font-size:11.0pt;line-height: 115%;font-family:&quot;Calibri&quot;,sans-serif;mso-ascii-theme-font:minor-latin; mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast; mso-hansi-theme-font:minor-latin;mso-bidi-font-family:&quot;Times New Roman&quot;; mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language: FR;mso-bidi-language:AR-SA"lang="EN-US" xml:lang="EN-US"&gtzero-dimensional (0D),mono-dimensional (1D), or two-dimensional (2D) nanostructures withwell-defined properties fabricated directly on surfaces are ofgrowing interest. The fabrication of covalently boundnanostructures on non-metallic surfaces is very promising in termsof applications, but the lack of surface-assistance during theirsynthesis is still a challenge to achieve the fabrication oflarge-scale and defect-free nanostructures. We discuss thestate-of-the-art approaches recently developed in order to providecovalently bounded nanoarchitectures on passivated metallicsurfaces, semiconductors and insulators.</span&g

    On-Surface Chemistry on Low-Reactive Surfaces

    No full text
    International audience<span style="font-size:11.0pt;line-height: 115%;font-family:&quot;Calibri&quot;,sans-serif;mso-ascii-theme-font:minor-latin; mso-fareast-font-family:&quot;Times New Roman&quot;;mso-fareast-theme-font:minor-fareast; mso-hansi-theme-font:minor-latin;mso-bidi-font-family:&quot;Times New Roman&quot;; mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language: FR;mso-bidi-language:AR-SA"lang="EN-US" xml:lang="EN-US"&gtzero-dimensional (0D),mono-dimensional (1D), or two-dimensional (2D) nanostructures withwell-defined properties fabricated directly on surfaces are ofgrowing interest. The fabrication of covalently boundnanostructures on non-metallic surfaces is very promising in termsof applications, but the lack of surface-assistance during theirsynthesis is still a challenge to achieve the fabrication oflarge-scale and defect-free nanostructures. We discuss thestate-of-the-art approaches recently developed in order to providecovalently bounded nanoarchitectures on passivated metallicsurfaces, semiconductors and insulators.</span&g

    On-surface fabrication of covalently bounded nanostructures monitored by HR-AFM at ambient conditions

    No full text
    International audienceThe fabrication of extended and compact nanostructures based on on-surface polymerisation has emerged a widespread research objective because these nanostructures can be integrated as nanocomponents in functional devices due to their electronic and photo physical proprieties. Most of onsurface reactions require catalytic role of the metal surface, which prevent the formation of extended nanostructures due to the presence of organo-metallic intermediate or on surface-defects which strongly hinder the formation of compact and well-ordered nanostructures. Here, we propose to use reactions promoted by thermal or light stimuli without any role of metal atom as “catalyst”. Herein we present onsurface [4 + 2] cycloaddition of 1,4-bis-(4’-vinyl)-2,5-bis(decyloxy)benzene (VINYL) molecules initiated by thermal polymerization and light-induced homo-polymerisation of 4-[(S,S)-2,3- Epoxyhexyloxy]phenyl-4-decyloxy)benzoate (EPOXY) molecules deposited on HOPG surface and monitored by high-resolution AFM at ambient conditions. After deposition of the two type of molecules on HOPG, we observed the formation of periodic, compact and large extended 2D supramolecular networks (see Fig.1a and 1.d). After UV-light exposure of the network constituted by EPOXY molecules or thermal annealing of those constituted by VINYL molecules, we observed a modification of the periodicity of the nanostructures. The difference in periodicity might be contribute to the formation of ether bridge between two adjacent molecules. We shall propose molecular adsorption models corresponding to network before and after polymerization. The chemical nature of resulting polymers is currently investigated

    On-Surface Reactivity of Disubstituted-Bianthryl Molecules on Cu(111) and Au(111) Surfaces

    No full text
    International audienceOn-surface π-conjugated 1D polymers, like graphene nanoribbons, have emerged as a class of promising materials. On-surface chemical properties of 9,9â€Č-bianthryl molecules are widely developed as they can be used as starting building blocks to provide graphene nanoribbons. Here, we propose to investigate the chemical behavior of 10,10â€Č-disubstituted-9,9â€Č-bianthryl molecules on Cu(111) and Au(111) surfaces by using scanning tunneling microscopy under ultra-high vacuum. We demonstrated that the balance between molecule-molecule interaction, molecule-substrate interaction, and molecular rearrangement, drastically alter the chemical properties of the adsorbed molecule by thermal annealing

    Stable self-assembly of dipolar molecules on an Au(111) surface under UHV and an inert-atmosphere

    No full text
    International audienceThe growth of an extended supramolecular network using dipolar molecules as the building blocks is of great technological interest. We investigated the self-assembly of a dipolar molecule on an Au(111) surface. The formation of an extended two-dimensional network was demonstrated by scanning tunnelling microscopy under ultra-high vacuum and explained in terms of molecule–molecule interactions. This 2D-network is still stable under the pressure of one atmosphere of nitrogen, which demonstrated its interest for the development of submolecular-precisely polyfunctional smart surfaces

    Etudes de réactions de photopolymérisation en surface de cristaux ioniques isolants par nc-AFM sous UHV

    No full text
    National audienceL’une des stratégies bien maitrisée et répandue en solution est fondée sur l’emploi d’un photo-initiateur qui absorbe fortement la lumière et se transforme en agent déclencheur d’une réaction radicalaire de polymérisation des monomères dispersés en solution. Notre travail s’inspire de ce comportement en solution pour tenter de le reproduire sur surface. La première étape consiste à trouver une combinaison d’un monomère et d’une surface permettant le développement d’une phase supramoléculaire métastable garantissant la diffusion des monomères pour réagir. La deuxième étape consiste à déposer sur la phase supramoléculaire précédemment créée un photo-initiateur capable de s’y adsorber et de déclencher la réaction de polymérisation photo-induite
    • 

    corecore