18 research outputs found

    Ultra-Broadband Infrared Absorption by Tapered Hyperbolic Multilayer Waveguides

    Get PDF
    Ultra-broadband strong absorption over 92% covering the infrared wavelength range of 1 ~ 6μm is demonstrated by using the tapered hyperbolic Au-SiO2 multilayer waveguides on glass substrates. Such broadband absorption is formed by the stop-light modes at various wavelengths located at different waveguide widths. A planar hyperbolic waveguide model is built to determine the stop-light modes by considering both forward and backward guided modes. The stop-light modes located inside the Au-SiO2 multilayer waveguide are simulated at the absorption peaks by reducing the Au loss. Tapered multilayer waveguides with varying top widths are further simulated, fabricated and measured, indicating the almost linear relation between the waveguide width and the stop-light wavelength. Moreover, the broadband absorption of tapered waveguide is proved to be angle-insensitive and polarization-independent, and the heat generation and temperature increase are also discussed

    Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers

    Full text link
    Epsilon-near-zero (ENZ) metamaterial slabs at visible frequencies based on metal-dielectric multilayers are experimentally realized. Transmission, reflection and absorption spectra are measured and used to determine the complex refractive indices and the effective permittivities of the ENZ slabs, which agree with the results obtained from both the numerical simulations and the optical nonlocalities analysis. Furthermore, light propagation in ENZ slabs and directional emission from ENZ prisms are also analyzed. The accurate determination of the ENZ wavelength for metal-dielectric multilayer metamaterial slabs is important for realizing many unique applications, such as phase front manipulation and enhancement of photonic density of states.Comment: 9 pages, 5 figure

    Laser-Scribed Conductive, Photoactive Transition Metal Oxide on Soft Elastomers for Janus On-Skin Electronics and Soft Actuators

    Get PDF
    Laser-assisted fabrication of conductive materials on flexible substrates has attracted intense interests because of its simplicity, easy customization, and broad applications. However, it remains challenging to achieve laser scribing of conductive materials on tissue-like soft elastomers, which can serve as the basis to construct bioelectronics and soft actuators. Here, we report laser scribing of metallic conductive, photoactive transition metal oxide (molybdenum dioxide) on soft elastomers, coated with molybdenum chloride precursors, under ambient conditions. Laser-scribed molybdenum dioxide (LSM) exhibits high electrical conductivity, biocompatibility, chemical stability, and compatibility with magnetic resonance imaging. In addition, LSM can be made on various substrates (polyimide, glass, and hair), showing high generality. Furthermore, LSM-based Janus on-skin electronics are developed to record information from human skin, human breath, and environments. Taking advantage of its outstanding photothermal effect, LSM-based soft actuators are developed to build light-driven reconfigurable three-dimensional architectures, reshapable airflow sensors, and smart robotic worms with bioelectronic sensors

    Laser-Scribed Conductive, Photoactive Transition Metal Oxide on Soft Elastomers for Janus On-Skin Electronics and Soft Actuators

    Get PDF
    Laser-assisted fabrication of conductive materials on flexible substrates has attracted intense interests because of its simplicity, easy customization, and broad applications. However, it remains challenging to achieve laser scribing of conductive materials on tissue-like soft elastomers, which can serve as the basis to construct bioelectronics and soft actuators. Here, we report laser scribing of metallic conductive, photoactive transition metal oxide (molybdenum dioxide) on soft elastomers, coated with molybdenum chloride precursors, under ambient conditions. Laser-scribed molybdenum dioxide (LSM) exhibits high electrical conductivity, biocompatibility, chemical stability, and compatibility with magnetic resonance imaging. In addition, LSM can be made on various substrates (polyimide, glass, and hair), showing high generality. Furthermore, LSM-based Janus on-skin electronics are developed to record information from human skin, human breath, and environments. Taking advantage of its outstanding photothermal effect, LSM-based soft actuators are developed to build light-driven reconfigurable three-dimensional architectures, reshapable airflow sensors, and smart robotic worms with bioelectronic sensors

    Significance of Salmonella typhi bacteriuria.

    Get PDF
    Bacteriuria due to Salmonella typhi usually occurs following recent typhoid fever or in chronic carrier states. Data from 18 patients with S. typhi bacteriuria, seen during 5 years, were analyzed. Fourteen patients had localized urinary tract infection due to S. typhi. Four others had bacteriuria, probably associated with typhoid fever. Localized abnormalities of the urinary tract and kidneys and also systemic diseases were found to predispose patients to S. typhi bacteriuria. Local abnormalities encountered included urolithiasis (n = 3), prostatic hypertrophy (n = 1), and tuberculosis (n = 1). One renal transplant recipient and another with lupus nephritis had S. typhi bacteriuria. One had associated strongyloidosis, and another was pregnant

    Spontaneous Emission Rate Enhancement with Aperiodic Thue-Morse Multilayer

    No full text
    The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of states for various nanophotonic applications

    Comparison of the efficacy of cardamom (Elettaria cardamomum) with pioglitazone on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in albino rats

    No full text
    To evaluate the efficacy of cardamom with pioglitazone on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in albino rats. There were four groups of 6 rats each. First group received dexamethasone alone in a dose of 8 mg/kg intraperitoneally for 6 days to induce metabolic changes and considered as dexamethasone control. Second group received cardamom suspension 1 g/kg/10 mL of 2% gum acacia orally 6 days before dexamethasone and 6 days during dexamethasone administration. Third group received pioglitazone 45 mg/kg orally 6 days before dexamethasone and 6 days during dexamethasone administration. Fourth group did not receive any medication and was considered as normal control. Fasting blood sugar, lipid profile, blood sugar 2 h after glucose load, liver weight, liver volume were recorded, and histopathological analysis was done. The effects of cardamom were compared with that of pioglitazone. Dexamethasone caused hepatomegaly, dyslipidemia and hyperglycemia. Both pioglitazone and cardamom significantly reduced hepatomegaly, dyslipidemia, and hyperglycemia (P < 0.01). Reduction of blood sugar levels after glucose load was significant with pioglitazone in comparison to cardamom (P < 0.01). Cardamom has comparable efficacy to pioglitazone in preventing dexamethasone-induced hepatomegaly, dyslipidemia, and fasting hyperglycemia
    corecore