14 research outputs found

    Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features.

    Get PDF
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic "feature" sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≄0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy

    Revealing Tumor Habitats from Texture Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness

    No full text
    We propose an approach for characterizing structural heterogeneity of lung cancer nodules using Computed Tomography Texture Analysis (CTTA). Measures of heterogeneity were used to test the hypothesis that heterogeneity can be used as predictor of nodule malignancy and patient survival. To do this, we use the National Lung Screening Trial (NLST) dataset to determine if heterogeneity can represent differences between nodules in lung cancer and nodules in non-lung cancer patients. 253 participants are in the training set and 207 participants in the test set. To discriminate cancerous from non-cancerous nodules at the time of diagnosis, a combination of heterogeneity and radiomic features were evaluated to produce the best area under receiver operating characteristic curve (AUROC) of 0.85 and accuracy 81.64%. Second, we tested the hypothesis that heterogeneity can predict patient survival. We analyzed 40 patients diagnosed with lung adenocarcinoma (20 short-term and 20 long-term survival patients) using a leave-one-out cross validation approach for performance evaluation. A combination of heterogeneity features and radiomic features produce an AUROC of 0.9 and an accuracy of 85% to discriminate long- and short-term survivors

    Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening

    No full text
    Low-dose computed tomography (LDCT) plays a critical role in the early detection of lung cancer. Despite the life-saving benefit of early detection by LDCT, there are many limitations of this imaging modality including high rates of detection of indeterminate pulmonary nodules. Radiomics is the process of extracting and analyzing image-based, quantitative features from a region-of-interest which then can be analyzed to develop decision support tools that can improve lung cancer screening. Although prior published research has shown that delta radiomics (i.e., changes in features over time) have utility in predicting treatment response, limited work has been conducted using delta radiomics in lung cancer screening. As such, we conducted analyses to assess the performance of incorporating delta with conventional (non delta) features using machine learning to predict lung nodule malignancy. We found the best improved area under the receiver operating characteristic curve (AUC) was 0.822 when delta features were combined with conventional features versus an AUC 0.773 for conventional features only. Overall, this paper demonstrates the important utility of combining delta radiomics features with conventional radiomics features to improve performance of models in the lung cancer screening setting

    Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN\u27s

    No full text
    Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neural networks (CNNs) have become widely used in medical image analysis. We study the ability of a CNN to capture nodule size in computed tomography images after images are resized for CNN input. For our experiments, we used the National Lung Screening Trial data set. Nodules were labeled into 2 categories (small/large) based on the original size of a nodule. After all extracted patches were re-sampled into 100-by-100-pixel images, a CNN was able to successfully classify test nodules into small- and large-size groups with high accuracy. To show the generality of our discovery, we repeated size classification experiments using Common Objects in Context (COCO) data set. From the data set, we selected 3 categories of images, namely, bears, cats, and dogs. For all 3 categories a 5- × 2-fold cross-validation was performed to put them into small and large classes. The average area under receiver operating curve is 0.954, 0.952, and 0.979 for the bear, cat, and dog categories, respectively. Thus, camera image rescaling also enables a CNN to discover the size of an object. The source code for experiments with the COCO data set is publicly available in Github (https://github.com/VisionAI-USF/COCO_Size_Decoding/)

    Radiomics of Lung Nodules: A Multi- Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic “feature” sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law’s features, gray-level cooccurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≄ 0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features’ redundancy

    Radiomics of Lung Nodules: A Multi- Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic “feature” sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law’s features, gray-level cooccurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≄ 0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features’ redundancy

    Predicting Malignant Nodules from Screening CT Scans

    Get PDF
    Objectives The aim of this study was to determine whether quantitative analyses (“radiomics”) of low-dose computed tomography lung cancer screening images at baseline can predict subsequent emergence of cancer. Methods Public data from the National Lung Screening Trial (ACRIN 6684) were assembled into two cohorts of 104 and 92 patients with screen-detected lung cancer and then matched with cohorts of 208 and 196 screening subjects with benign pulmonary nodules. Image features were extracted from each nodule and used to predict the subsequent emergence of cancer. Results The best models used 23 stable features in a random forests classifier and could predict nodules that would become cancerous 1 and 2 years hence with accuracies of 80% (area under the curve 0.83) and 79% (area under the curve 0.75), respectively. Radiomics outperformed the Lung Imaging Reporting and Data System and volume-only approaches. The performance of the McWilliams risk assessment model was commensurate. Conclusions The radiomics of lung cancer screening computed tomography scans at baseline can be used to assess risk for development of cancer

    Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic “feature” sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law\u27s features, gray-level co-occurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of ≄0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features\u27 redundancy

    Radiomics of Lung Nodules: A Multi- Institutional Study of Robustness and Agreement of Quantitative Imaging Features

    No full text
    Radiomics is to provide quantitative descriptors of normal and abnormal tissues during classification and prediction tasks in radiology and oncology. Quantitative Imaging Network members are developing radiomic "feature" sets to characterize tumors, in general, the size, shape, texture, intensity, margin, and other aspects of the imaging features of nodules and lesions. Efforts are ongoing for developing an ontology to describe radiomic features for lung nodules, with the main classes consisting of size, local and global shape descriptors, margin, intensity, and texture-based features, which are based on wavelets, Laplacian of Gaussians, Law's features, gray-level cooccurrence matrices, and run-length features. The purpose of this study is to investigate the sensitivity of quantitative descriptors of pulmonary nodules to segmentations and to illustrate comparisons across different feature types and features computed by different implementations of feature extraction algorithms. We calculated the concordance correlation coefficients of the features as a measure of their stability with the underlying segmentation; 68% of the 830 features in this study had a concordance CC of Ն0.75. Pairwise correlation coefficients between pairs of features were used to uncover associations between features, particularly as measured by different participants. A graphical model approach was used to enumerate the number of uncorrelated feature groups at given thresholds of correlation. At a threshold of 0.75 and 0.95, there were 75 and 246 subgroups, respectively, providing a measure for the features' redundancy
    corecore