4,042 research outputs found

    Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite

    Full text link
    Impurity effects on the stability of a ferromagnetic metallic state in a bicritical-state manganite, (La0.7Pr0.3)0.65Ca0.35MnO3, on the verge of metal-insulator transition have been investigated by substituting a variety of transition-metal atoms for Mn ones. Among them, Fe doping exhibits the exceptional ability to dramatically decrease the ferromagnetic transition temperature. Systematic studies on the magnetotransport properties and x-ray diffraction for the Fe-doped crystals have revealed that charge-orbital ordering evolves down to low temperatures, which strongly suppresses the ferromagnetic metallic state. The observed glassy magnetic and transport properties as well as diffuse phase transition can be attributed to the phase-separated state where short-range charge-orbital-ordered clusters are embedded in the ferromagnetic metallic matrix. Such a behavior in the Fe-doped manganites form a marked contrast to the Cr-doping effects on charge-orbital-ordered manganites known as impurity-induced collapse of charge-orbital ordering.Comment: 8 pages, 7 figure

    Spin-lattice order in frustrated ZnCr2O4

    Get PDF
    Using synchrotron X-rays and neutron diffraction we disentangle spin-lattice order in highly frustrated ZnCr2_2O4_4 where magnetic chromium ions occupy the vertices of regular tetrahedra. Upon cooling below 12.5 K the quandary of anti-aligning spins surrounding the triangular faces of tetrahedra is resolved by establishing weak interactions on each triangle through an intricate lattice distortion. The resulting spin order is however, not simply a N\'{e}el state on strong bonds. A complex co-planar spin structure indicates that antisymmetric and/or further neighbor exchange interactions also play a role as ZnCr2_2O4_4 resolves conflicting magnetic interactions

    Gmunu: Paralleled, grid-adaptive, general-relativistic magnetohydrodynamics in curvilinear geometries in dynamical spacetimes

    Get PDF
    We present an update of the General-relativistic multigrid numerical (Gmunu) code, a parallelized, multi-dimensional curvilinear, general relativistic magnetohydrodynamics code with an efficient non-linear cell-centred multigrid (CCMG) elliptic solver, which is fully coupled with an efficient block-based adaptive mesh refinement modules. Currently, Gmunu is able to solve the elliptic metric equations in the conformally flat condition (CFC) approximation with the multigrid approach and the equations of ideal general-relativistic magnetohydrodynamics by means of high-resolution shock-capturing finite volume method with reference-metric formularise multi-dimensionally in cartesian, cylindrical or spherical geometries. To guarantee the absence of magnetic monopoles during the evolution, we have developed an elliptical divergence cleaning method by using multigrid solver. In this paper, we present the methodology, full evolution equations and implementation details of our code Gmunu and its properties and performance in some benchmarking and challenging relativistic magnetohydrodynamics problems

    Spin freezing and dynamics in Ca_{3}Co_{2-x}Mn_{x}O_{6} (x ~ 0.95) investigated with implanted muons: disorder in the anisotropic next-nearest neighbor Ising model

    Full text link
    We present a muon-spin relaxation investigation of the Ising chain magnet Ca_{3}Co_{2-x}Mn_{x}O_{6} (x~0.95). We find dynamic spin fluctuations persisting down to the lowest measured temperature of 1.6 K. The previously observed transition at around T ~18 K is interpreted as a subtle change in dynamics for a minority of the spins coupling to the muon that we interpret as spins locking into clusters. The dynamics of this fraction of spins freeze below a temperature T_{SF}~8 K, while a majority of spins continue to fluctuate. An explanation of the low temperature behavior is suggested in terms of the predictions of the anisotropic next-nearest-neighbor Ising model.Comment: 4 pages, 2 figure

    Raman scattering studies of temperature- and field-induced melting of charge order in (La,Pr,Ca)MnO3_{3}

    Full text link
    We present Raman scattering studies of the structural and magnetic phases that accompany temperature- and field-dependent melting of charge- and orbital-order (COO) in La0.5Ca0.5MnO3 and La0.25Pr0.375Ca0.375MnO3. Our results show that thermal and field-induced COO melting in La0.5Ca0.5MnO3 exhibits three stages in a heterogeneous melting process associated with a structural change: a long-range, strongly JT distorted/COO regime; a coexistence regime; and weakly JT distorted/PM or FM phase. We provide a complete structural phase diagram of La0.5Ca0.5MnO3 for the temperature and field ranges 6<=T<=170 K and 0<=H<=9 T. We also investigate thermal and field-induced melting in La0.25Pr0.375Ca0.375MnO3 to elucidate the role of disorder in melting of COO. We find that while thermal melting of COO in La0.25Pr0.375Ca0.375MnO3 is quite similar to that in La0.5Ca0.5MnO3, the field-induced transition from the COO phase to the weakly JT-distorted/FM phase in La0.25Pr0.375Ca0.375MnO3 is very abrupt, and occurs at significantly lower fields (H~2 T at T~0 K) than in La0.5Ca0.5MnO3 (H~30 T at T=0 K). Moreover, the critical field H_c increases with increasing temperature in La0.25Pr0.375Ca0.375MnO3 in contrast to La0.5Ca0.5MnO3. To explain these differences, we propose that field-induced melting of COO in La0.25Pr0.375Ca0.375MnO3 is best described as the field-induced percolation of FM domains, and we suggest that Griffiths phase physics may be an appropriate theoretical model for describing the unusual temperature- and field- dependent transitions observed in La0.25Pr0.375Ca0.375MnO3.Comment: 14 pages, 8 figures, to be published in PR

    Spin phonon coupling in frustrated magnet CdCr2_2O4_4

    Full text link
    The infrared phonon spectrum of the spinel CdCr2O4 is measured as a function temperature from 6 K to 300K. The triply degenerate Cr phonons soften in the paramagnetic phase as temperature is lowered below 100 K and then split into a singlet and doublet in the low T antiferromagnetic phase which is tetragonally distorted to relieve the geometric frustration in the pyrochlore lattice of Cr3+^{3+} ions. The phonon splitting is inconsistent with the simple increase (decrease) in the force constants due to deceasing (increasing) bond lengths in the tetragonal phase. Rather they correspond to changes in the force constants due to the magnetic order in the antiferromagnetic state. The phonon splitting in this system is opposite of that observed earlier in ZnCr2O4 as predicted by theory. The magnitude of the splitting gives a measure of the spin phonon coupling strength which is smaller than in the case of ZnCr2O4.Comment: 4.2 pages, 4 figures, 1 reference added, submmite

    Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4

    Full text link
    Commensurability effects for nickelates have been studied by the first neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO2_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a "stripe glass" which resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to [email protected]
    • …
    corecore