27 research outputs found

    Simple and Rapid In Vivo Generation of Chromosomal Rearrangements using CRISPR/Cas9 Technology

    Get PDF
    Summary Generation of genetically engineered mouse models (GEMMs) for chromosomal translocations in the endogenous loci by a knockin strategy is lengthy and costly. The CRISPR/Cas9 system provides an innovative and flexible approach for genome engineering of genomic loci in vitro and in vivo. Here, we report the use of the CRISPR/Cas9 system for engineering a specific chromosomal translocation in adult mice in vivo. We designed CRISPR/Cas9 lentiviral vectors to induce cleavage of the murine endogenous Eml4 and Alk loci in order to generate the Eml4-Alk gene rearrangement recurrently found in non-small-cell lung cancers (NSCLCs). Intratracheal or intrapulmonary inoculation of lentiviruses induced Eml4-Alk gene rearrangement in lung cells in vivo. Genomic and mRNA sequencing confirmed the genome editing and the production of the Eml4-Alk fusion transcript. All mice developed Eml4-Alk -rearranged lung tumors 2 months after the inoculation, demonstrating that the CRISPR/Cas9 system is a feasible and simple method for the generation of chromosomal rearrangements in vivo

    Assessment of Cellular Uptake Efficiency According to Multiple Inhibitors of Fe3O4-Au Core-Shell Nanoparticles: Possibility to Control Specific Endocytosis in Colorectal Cancer Cells

    Get PDF
    Abstract Magnetite (Fe3O4)-gold (Au) core-shell nanoparticles (NPs) have unique magnetic and optical properties. When combined with biological moieties, these NPs can offer new strategies for biomedical applications, such as drug delivery and cancer targeting. Here, we present an effective method for the controllable cellular uptake of magnetic core-shell NP systems combined with biological moieties. Vimentin, which is the structural protein, has been biochemically confirmed to affect phagocytosis potently. In addition, vimentin affects exogenic materials internalization into cells even though under multiple inhibitions of biological moieties. In this study, we demonstrate the cellular internalization performance of Fe3O4-Au core-shell NPs with surface modification using a combination of biological moieties. The photofluorescence of vimentin-tagged NPs remained unaffected under multiple inhibition tests, indicating that the NPs were minimally influenced by nystatin, dynasore, cytochalasin D, and even the Muc1 antibody (Ab). Consequently, this result indicates that the Muc1 Ab can target specific molecules and can control specific endocytosis. Besides, we show the possibility of controlling specific endocytosis in colorectal cancer cells

    Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells

    Get PDF
    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)(1). Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression(2). AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation(3). The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells(4). Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly(5–8), potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients

    Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice

    Get PDF
    Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis

    Synthesis of Multifunctional Fe<sub>3</sub>O<sub>4</sub>–CdSe/ZnS Nanoclusters Coated with Lipid A toward Dendritic Cell-Based Immunotherapy

    No full text
    We demonstrate a novel route to synthesize Fe<sub>3</sub>O<sub>4</sub>–CdSe/ZnS multifunctional nanoclusters (MNCs) with excellent optical and magnetic properties and biocompatibility. The successful fabrication of highly fluorescent and magnetic MNCs is achieved via a coupling process based on a partial ligand exchange reaction at the aqueous–organic solution interface. In addition, we show that dendritic cells (DCs), the sentinel of the immune system, can uptake the MNCs without significant change in cell viability. The MNCs uptaken by the DCs can be used for imaging, tracking, and separating the DCs. Furthermore, the MNCs can be loaded with a pathogen-associated molecular pattern, lipid A, via a hydrophobic–hydrophobic interaction. Ex vivo labeling of DCs with the MNC–lipid A complex enhances the DC migration to draining lymph nodes and tumor antigen-specific T cell responses in vivo. Our work may contribute to the development of synthetic routes to various multifunctional nanoclusters and DC-based cancer immunotherapies

    <em>Orientia tsutsugamushi</em> Subverts Dendritic Cell Functions by Escaping from Autophagy and Impairing Their Migration

    Get PDF
    <div><h3>Background</h3><p>Dendritic cells (DCs) are the most potent antigen-presenting cells that link innate and adaptive immune responses, playing a pivotal role in triggering antigen-specific immunity. Antigen uptake by DCs induces maturational changes that include increased surface expression of major histocompatibility complex (MHC) and costimulatory molecules. In addition, DCs actively migrate to regional lymph nodes and activate antigen-specific naive T cells after capturing antigens. We characterize the functional changes of DCs infected with <em>Orientia tsutsugamushi</em>, the causative agent of scrub typhus, since there is limited knowledge of the role played by DCs in <em>O. tsutsugamushi</em> infection.</p> <h3>Methodology/Principal Finding</h3><p><em>O. tsutsugamushi</em> efficiently infected bone marrow-derived DCs and induced surface expression of MHC II and costimulatory molecules. In addition, <em>O. tsutsugamushi</em> induced autophagy activation, but actively escaped from this innate defense system. Infected DCs also secreted cytokines and chemokines such as IL-6, IL-12, MCP5, MIP-1Îą, and RANTES. Furthermore, <em>in vitro</em> migration of DCs in the presence of a CCL19 gradient within a 3D collagen matrix was drastically impaired when infected with <em>O. tsutsugamushi</em>. The infected cells migrated much less efficiently into lymphatic vessels of ear dermis <em>ex vivo</em> when compared to LPS-stimulated DCs. <em>In vivo</em> migration of <em>O. tsutsugamushi</em>-infected DCs to regional lymph nodes was significantly impaired and similar to that of immature DCs. Finally, we found that MAP kinases involved in chemotactic signaling were differentially activated in <em>O. tsutsugamushi</em>-infected DCs.</p> <h3>Conclusion/Significance</h3><p>These results suggest that <em>O. tsutsugamushi</em> can target DCs to exploit these sentinel cells as replication reservoirs and delay or impair the functional maturation of DCs during the bacterial infection in mammals.</p> </div

    Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma.

    No full text
    Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL

    <i>In vitro</i> migration of DCs infected with <i>O. tsutsugamushi</i> in a 3D collagen matrix.

    No full text
    <p>A. Single cell tracking was performed using Manual Tracking Plugin with Image J software. Thirty cells were randomly selected and tracked for 4 h. B. Speed, directionality, and Euclidean distance parameters were calculated by analyzing the acquired data from the Chemotaxis and Migration Tool Plugin software. The graphs represent velocity, directionality, and Euclidean distance, respectively. Red bars represent mean values. *: <i>p</i><0.05, **: <i>p</i><0.01, CNT: immature DCs, OT: DCs infected with <i>O. tsutsugamushi</i>, UV-OT: DCs infected with UV-inactivated <i>O. tsutsugamushi</i>, LPS: DCs stimulated with LPS, OT/LPS: DCs stimulated with <i>O. tsutsugamushi</i> and LPS.</p
    corecore