317 research outputs found

    Anti-Forensic Trace Detection in Digital Forensic Triage Investigations

    Get PDF
    Anti-forensics, whether intentionally to disrupt investigations or simply an effort to make a computer system run better, is becoming of increasing concern to digital investigators. This work attempts to assess the problem of anti-forensics techniques commonly deployed in South Korea. Based on identified challenges, a method of signature-based anti-forensic trace detection is proposed for triage purposes that will assist investigators in quickly making decisions about the suspect digital devices before conducting a full investigation. Finally, a prototype anti-forensic trace detection system is given to demonstrate the practicality of the proposed method

    Incidentally Discovered a Self-Inflicted a Nail in the Brain of Schizophrenia Patient

    Get PDF
    The self-infliction of foreign bodies into the brain represents rare a clinical phenomenon that has been reported primarily in cases involving accidents and suicide attempts. However, various motivations for self-injurious behaviors as well as suicide attempts have been reported, especially in patients with psychotic illnesses. A 47-year-old man with a history of schizophrenia presented to our hospital due to the presence of a nail on his plain skull X-ray. He diagnosed paranoid type of schizophrenia about 17 years earlier, and his psychiatric symptoms were well controlled by medication. Interestingly, he was not aware of the presence of the nail in his brain and showed no neurological deficits. In the course of detailed history taking, we discovered that the nail was driven into his brain during a hallucinatory experience that had occurred more than 10 years earlier. Because we believed that removing the nail from his brain would be more dangerous than maintaining the status quo, the nail was not removed. This is a very rare case of a self-inflicted injury involving inserting a nail into the brain under the influence of hallucinations. The absence of adverse effects or neurological symptoms/signs related to the presence of a foreign metallic body in the brain for over 10 years is exceptional

    Constructing quantum games from symmetric non-factorizable joint probabilities

    Full text link
    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.Comment: 20 pages, no figure, accepted for publication in Physics Letters

    1D-confined crystallization routes for tungsten phosphides

    Full text link
    Topological materials confined in one-dimension (1D) can transform computing technologies, such as 1D topological semimetals for nanoscale interconnects and 1D topological superconductors for fault-tolerant quantum computing. As such, understanding crystallization of 1D-confined topological materials is critical. Here, we demonstrate 1D-confined crystallization routes during template-assisted nanowire synthesis where we observe diameter-dependent phase selectivity for topological metal tungsten phosphides. A phase bifurcation occurs to produce tungsten monophosphide and tungsten diphosphide at the cross-over nanowire diameter of ~ 35 nm. Four-dimensional scanning transmission electron microscopy was used to identify the two phases and to map crystallographic orientations of grains at a few nm resolution. The 1D-confined phase selectivity is attributed to the minimization of the total surface energy, which depends on the nanowire diameter and chemical potentials of precursors. Theoretical calculations were carried out to construct the diameter-dependent phase diagram, which agrees with experimental observations. Our find-ings suggest a new crystallization route to stabilize topological materials confined in 1D.Comment: 5 figure

    Analysis of two-player quantum games in an EPR setting using geometric algebra

    Get PDF
    The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of Clifford geometric algebra (GA). In this setting, the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, which is then obtained as proper subset of the corresponding quantum game. As examples, using GA we analyze the games of Prisoners' Dilemma and Stag Hunt when played in the EPR type setting.Comment: 20 pages, no figure, revise

    Microscopic calculations of medium effects for 200-MeV (p,p') reactions

    Get PDF
    We examine the quality of a G-matrix calculation of the effective nucleon-nucleon (NN) interaction for the prediction of the cross section and analyzing power for 200-MeV (p,p') reactions that populate natural parity states in 16^{16}O, 28^{28}Si, and 40^{40}Ca. This calculation is based on a one-boson-exchange model of the free NN force that reproduces NN observables well. The G-matrix includes the effects of Pauli blocking, nuclear binding, and strong relativistic mean-field potentials. The implications of adjustments to the effective mass ansatz to improve the quality of the approximation at momenta above the Fermi level will be discussed, along with the general quality of agreement to a variety of (p,p') transitions.Comment: 36 pages, TeX, 18 figure

    The gravity dual of supersymmetric gauge theories on a squashed three-sphere

    Get PDF
    We present the gravity dual to a class of three-dimensional N=2 supersymmetric gauge theories on a U(1) x U(1)-invariant squashed three-sphere, with a non-trivial background gauge field. This is described by a supersymmetric solution of four-dimensional N=2 gauged supergravity with a non-trivial instanton for the graviphoton field. The particular gauge theory in turn determines the lift to a solution of eleven-dimensional supergravity. We compute the partition function for a class of Chern-Simons quiver gauge theories on both sides of the duality, in the large N limit, finding precise agreement for the functional dependence on the squashing parameter. This constitutes an exact check of the gauge/gravity correspondence in a non-conformally invariant setting.Comment: 37 pages. v2: typos fixed, references added, new section 2.5 added discussing the solution in standard global coordinates; v3: more typos fixed, version published on Nucl. Phys.
    • …
    corecore