47 research outputs found

    6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point Pair Features

    Full text link
    The point pair feature (PPF) is widely used for 6D pose estimation. In this paper, we propose an efficient 6D pose estimation method based on the PPF framework. We introduce a well-targeted down-sampling strategy that focuses more on edge area for efficient feature extraction of complex geometry. A pose hypothesis validation approach is proposed to resolve the symmetric ambiguity by calculating edge matching degree. We perform evaluations on two challenging datasets and one real-world collected dataset, demonstrating the superiority of our method on pose estimation of geometrically complex, occluded, symmetrical objects. We further validate our method by applying it to simulated punctures.Comment: 16 pages,20 figure

    SOT-MRAM-Enabled Probabilistic Binary Neural Networks for Noise-Tolerant and Fast Training

    Full text link
    We report the use of spin-orbit torque (SOT) magnetoresistive random-access memory (MRAM) to implement a probabilistic binary neural network (PBNN) for resource-saving applications. The in-plane magnetized SOT (i-SOT) MRAM not only enables field-free magnetization switching with high endurance (> 10^11), but also hosts multiple stable probabilistic states with a low device-to-device variation (< 6.35%). Accordingly, the proposed PBNN outperforms other neural networks by achieving an 18* increase in training speed, while maintaining an accuracy above 97% under the write and read noise perturbations. Furthermore, by applying the binarization process with an additional SOT-MRAM dummy module, we demonstrate an on-chip MNIST inference performance close to the ideal baseline using our SOT-PBNN hardware

    Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review

    Get PDF
    Breast cancer is currently the most common malignancy and has a high mortality rate. Ginsenosides, the primary bioactive constituents of ginseng, have been shown to be highly effective against breast cancer both in vitro and in vivo. This study aims to comprehensively understand the mechanisms underlying the antineoplastic effects of ginsenosides on breast cancer. Through meticulous bibliometric analysis and an exhaustive review of pertinent research, we explore and summarize the mechanism of action of ginsenosides in treating breast cancer, including inducing apoptosis, autophagy, inhibiting epithelial-mesenchymal transition and metastasis, and regulating miRNA and lncRNA. This scholarly endeavor not only provides novel prospects for the application of ginsenosides in the treatment of breast cancer but also suggests future research directions for researchers

    Genomic landscape and expression profile of consensus molecular subtype four of colorectal cancer

    Get PDF
    BackgroundCompared to other subtypes, the CMS4 subtype is associated with lacking of effective treatments and poorer survival rates.MethodsA total of 24 patients with CRC were included in this study. DNA and RNA sequencing were performed to acquire somatic mutations and gene expression, respectively. MATH was used to quantify intratumoral heterogeneity. PPI and survival analyses were performed to identify hub DEGs. Reactome and KEGG analyses were performed to analyze the pathways of mutated or DEGs. Single-sample gene set enrichment analysis and Xcell were used to categorize the infiltration of immune cells.ResultsThe CMS4 patients had a poorer PFS than CMS2/3. CTNNB1 and CCNE1 were common mutated genes in the CMS4 subtype, which were enriched in Wnt and cell cycle signaling pathways, respectively. The MATH score of CMS4 subtype was lower. SLC17A6 was a hub DEG. M2 macrophages were more infiltrated in the tumor microenvironment of CMS4 subtype. The CMS4 subtype tended to have an immunosuppressive microenvironment.ConclusionThis study suggested new perspectives for exploring therapeutic strategies for the CMS4 subtype CRC

    Direct observation of high spin polarization in Co2FeAl thin films

    Get PDF
    We have studied the Co2FeAl thin films with different thicknesses epitaxially grown on GaAs (001) by molecular beam epitaxy. The magnetic properties and spin polarization of the films were investigated by in-situ magneto-optic Kerr effect (MOKE) measurement and spin-resolved angle-resolved photoemission spectroscopy (spin-ARPES) at 300 K, respectively. High spin polarization of 58% (±7%) was observed for the film with thickness of 21 unit cells (uc), for the first time. However, when the thickness decreases to 2.5 uc, the spin polarization falls to 29% (±2%) only. This change is also accompanied by a magnetic transition at 4 uc characterized by the MOKE intensity. Above it, the film's magnetization reaches the bulk value of 1000 emu/cm3. Our findings set a lower limit on the thickness of Co2FeAl films, which possesses both high spin polarization and large magnetization

    Hepatoma Cell-Derived Extracellular Vesicles Promote Liver Cancer Metastasis by Inducing the Differentiation of Bone Marrow Stem Cells Through microRNA-181d-5p and the FAK/Src Pathway

    Get PDF
    Bone marrow mesenchymal stem cells (BMSCs) are beneficial to repair the damaged liver. Tumor-derived extracellular vesicles (EV) are notorious in tumor metastasis. But the mechanism underlying hepatoma cell-derived EVs in BMSCs and liver cancer remains unclear. We hypothesize that hepatoma cell-derived EVs compromise the effects of BMSCs on the metastasis of liver cancer. The differentially expressed microRNAs (miRNAs) were screened. HepG2 cells were transfected with miR-181d-5p mimic or inhibitor, and the EVs were isolated and incubated with BMSCs to evaluate the differentiation of BMSCs into fibroblasts. Hepatoma cells were cultured with BMSCs conditioned medium (CM) treated with HepG2-EVs to assess the malignant behaviors of hepatoma cells. The downstream genes and pathways of miR-181d-5p were analyzed and their involvement in the effect of EVs on BMSC differentiation was verified through functional rescue experiments. The nude mice were transplanted with BMSCs-CM or BMSCs-CM treated with HepG2-EVs, and then tumor growth and metastasis in vivo were assessed. HepG2-EVs promoted fibroblastic differentiation of BMSCs, and elevated levels of α-SMA, vimentin, and collagen in BMSCs. BMSCs-CM treated with HepG2-EVs stimulated the proliferation, migration, invasion and epithelial-mesenchymal-transition (EMT) of hepatoma cells. miR-181d-5p was the most upregulated in HepG2-EVs-treated BMSCs. miR-181d-5p targeted SOCS3 to activate the FAK/Src pathway and SOCS3 overexpression inactivated the FAK/Src pathway. Reduction of miR-181d-5p in HepG2-EVs or SOCS3 overexpression reduced the differentiation of BMSCs into fibroblasts, and compromised the promoting effect of HepG2-EVs-treated BMSCs-CM on hepatoma cells. In vivo, HepG2-EVs-treated BMSCs facilitated liver cancer growth and metastasis. In conclusion, HepG2-EVs promote the differentiation of BMSCs, and promote liver cancer metastasis through the delivery of miR-181d-5p and the SOCS3/FAK/Src pathway

    Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    Get PDF
    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Nontransitive Security Types for Coarse-grained Information Flow Control

    No full text
    Language-based information flow control (IFC) aims to provide guarantees about information propagation in computer systems having multiple security levels. Existing IFC systems extend the lattice model of Denning's, enforcing transitive security policies by tracking information flows along with a partially ordered set of security levels. They yield a transitive noninterference property of either confidentiality or integrity. In this paper, we explore IFC for security policies that are not necessarily transitive. Such nontransitive security policies avoid unwanted or unexpected information flows implied by transitive policies and naturally accommodate high-level coarse-grained security requirements in modern component-based software. We present a novel security type system for enforcing nontransitive security policies. Unlike traditional security type systems that verify information propagation by subtyping security levels of a transitive policy, our type system relaxes strong transitivity by inferring information flow history through security levels and ensuring that they respect the nontransitive policy in effect. Such a type system yields a new nontransitive noninterference property that offers more flexible information flow relations induced by security policies that do not have to be transitive, therefore generalizing the conventional transitive noninterference. This enables us to directly reason about the extent of information flows in the program and restrict interactions between security-sensitive and untrusted components
    corecore