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Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide associ-

ation studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-

frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005

individuals, including 554 individuals selected for extreme LDL-C (>98th or<2nd percentile). Follow-up analyses included sequencing of

1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association

between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein,

and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes

for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified

from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion,

this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight

into the design and analysis of similar experiments.
Introduction

Elevated low-density lipoprotein cholesterol (LDL-C) is

one of the cardinal risk factors for coronary artery disease,

the leading cause of death in the United States.1 LDL-C is a

complex trait whose variation is influenced by the envi-

ronment and genes; approximately 40%–50% of the varia-

tion is estimated as heritable.2,3 Rare mutations have been

identified in families affected by Mendelian forms of lipid-

related disorders. Family members carrying these rare

variants typically demonstrate extreme lipid phenotypes

in childhood and, for those with high LDL-C, premature

cardiovascular disease. Family studies have shown that

extremely high cholesterol levels can result from muta-

tions in LDLR (MIM 606945), PCSK9 (MIM 607786),

APOB (MIM 107730), ABCG5 (MIM 605459), ABCG8

(MIM 605460), and LDLRAP1 (MIM 605747), whereas

extremely low cholesterol levels can result from muta-

tions in PCSK9, MTTP (MIM 590075), APOB (Rahalkar

and Hegele4), and ANGPTL35 (MIM 603874). Targeted

sequencing studies in subjects with low cholesterol levels

have detected rare mutations in LDLR,6 PCSK9,7 and

NPC1L18 (MIM 608010), but the overall contribution of

rare and low-frequency variants to population variation

in cholesterol levels remains poorly defined.

Genome-wide association studies (GWASs) focused

primarily on common variants have identified 157 loci

associated with lipid levels, including LDL-C.9 Although

GWASs have identified loci with robust evidence of associ-

ation with LDL-C, only 10%–12% of the total variance in

LDL-C can be attributed to these common variants,9

despite 40%–50% estimated heritability.2,3 We evaluated

the hypothesis that rare or low-frequency variants, which
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are not well covered by GWASs and not easily imputed,

are also associated with LDL-C.

In the current study, we performed a two-stage associa-

tion study to evaluate low-frequency variation in protein-

coding regions across the genome for association with

LDL-C. We examined the spectrum of coding variants

in associated genes in an unbiased manner. To address

these goals, the NHLBI Grand Opportunity (GO) Exome

Sequencing Project (ESP)10 completed exome sequencing

and analysis of 2,005 individuals, including 307 individuals

with extremely high and 247 with extremely low LDL-C

(>98th percentile or <2nd percentile) from population-

based cohorts (stage 1). We followed up with the most

promising 17 genes in 1,302 additional sequenced

individuals, including 157 individuals with extremely

high and 144 with extremely low LDL-C (stage 2). We also

performedgenotype-based follow-upof variants in 15genes

inup to52,221participants frompopulation-based cohorts.
Subjects and Methods

Study-Participant Samples
We selected samples from seven population-based cohorts: Athero-

sclerosis Risk in Communities (ARIC),11 Coronary Artery Risk

Development in Young Adults (CARDIA),12 the Cardiovascular

Health Study (CHS),13 the Framingham Heart Study (FHS),14 the

Jackson Heart Study (JHS),15 the Multi-Ethnic Study of Atheroscle-

rosis (MESA),16 and theWomen’s Health Initiative (WHI).17 Of the

2,005 individuals with exome sequence data in stage 1, 854 (43%)

were African American (AA) and the remainder (n ¼ 1,153 [57%])

were European American (EA) (Table S1, available online).

We calculated fasting LDL-C by using the Friedewald formula.18

For individuals on lipid-lowering medication, we estimated
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pretreatment LDL-C values by dividing treated LDL-C values

by 0.75 to model a 25% reduction in LDL-C on therapy. We

then regressed estimated pretreatment LDL-C levels (or actual

LDL-C levels for those not on lipid-lowering therapies) on sex,

age, and age squared within both cohort and ethnic (EA and AA)

groups. Residuals were then combined across studies, within

ethnicity strata, for selection of extreme LDL-C levels.

Participants with extreme levels of LDL-C (Table S1) were

selected from four population-based cohorts: ARIC,11 CHS,13

FHS,14 and JHS15 and represented the 1st and 99th percentile tails

in EA individuals (n ¼ 156 high LDL-C and 137 low LDL-C) and

the 2nd and 98th percentile tails in AA individuals (n ¼ 151 high

LDL-C and 110 low LDL-C). Additional samples not selected for

LDL-C levels came from ESP studies (n ¼ 1,451) on the basis of

the following phenotypes: early-onset myocardial infarction cases

and controls, ischemic stroke cases, blood pressure extremes, and

body mass index (BMI); also included was a set of randomly

selected samples among participants with near-complete pheno-

type data across a range of traits.

Stage 2 samples (n ¼ 1,302 [66.2%] AA) were selected from the

same seven cohorts as stage 1 and included individuals in the 1st

and 99th percentile tails of LDL-C in EA individuals (n ¼ 61 high

LDL-C and 63 low LDL-C) and 2nd and 98th percentile tails in

AA individuals (n ¼ 96 high LDL-C and 81 low LDL-C). Stage 1

samples included an 18-fold enrichment of extreme samples in

EA individuals and a 12-fold enrichment of extreme samples in

AA individuals (stage 2 samples were 21-fold and 7-fold for EA

and AA individuals, respectively). Additional information about

these samples and the distribution of LDL-C are given in Table

S1 and Figure S1. All procedures followed were in accordance

with the ethical standards of the responsible committee on

human experimentation (institutional and national), and all

individuals provided informed consent. Protocols were evaluated

by individual institutional review boards.

Exome Sequencing
Exome sequencing was performed at the University of Washing-

ton (UW; stage 1, n ¼ 773; stage 2, n¼ 858) and at the Broad Insti-

tute of Harvard and MIT (Broad; stage 1, n ¼ 1,232; stage 2, n ¼
444). DNA samples were quality controlled by concentration esti-

mation by Pico Green and, in some cases, by gel electrophoresis

and real-time-PCR-based genotyping. For the majority of the sam-

ples other than those from the WHI, initial quality control (QC)

was done centrally at the University of Vermont prior to shipping

to the UW and the Broad. Both centers prepared DNA samples by

subjecting genomic DNA to shearing and then ligating sequencing

adaptors. Exome capture for the samples was performed with the

Roche Nimblegen SeqCap EZ (UW) or Agilent SureSelect Human

All Exon 50 Mb (Broad) according to the manufacturers’ instruc-

tions. Paired-end sequencing (23 76 bp) was carried out with Illu-

mina GAII and HiSeq sequencing instruments. For QC purposes

prior to the release of sequence data, samples were initially con-

verted from real-time base calls to qseq.txt files with the use of

Bustard and aligned to the human reference sequence (UCSC

Genome Browser, hg19) with the Burrows-Wheeler Aligner.19 We

performed duplicate removal and indel realignment by using the

Genome Analysis Toolkit (GATK).20 After the use of GATK filters,

samples were required to reach at least 203 coverage over 70%

of the exome target. Prior to the release of individual-level

sequence reads, sequence data were required to match known

fingerprint genotypes for their respective samples. Variant calls

were evaluated on both bulk and per-sample properties for novel
The Americ
(absent from dbSNP) and known variant counts, transition/trans-

version (Ti/Tv) ratio, heterozygote/homozygote ratio, and inser-

tion/deletion ratio. Both bulk and sample metrics were compared

to historical values for exome sequencing projects at the two

centers. DNA samples that failed laboratory QC were requeued

for library preparation and sequencing.

A subset of these data is available from dbGaP under acces-

sion numbers phs000279, phs000401, phs000354, phs000362,

phs000285, phs000399, phs000347, phs000546, phs000556,

phs000581, phs000398, phs000402, phs000582, phs000422,

phs000400, phs000327, phs000403, phs000296, phs000254,

phs000518, phs000281, phs000291, phs000290, and phs000335.

Joint Read Mapping, Genotype Calling, and Variant-

Level QC for Data from the UWand Broad Sequencing

Centers
Anaverageof 130millionmapped readsweregeneratedper sample,

and 95.5% of bases reached a recalibrated quality score of Q20 or

greater. A total of 63.8%of the readsmapped to the exonic target re-

gion, and themeandepthof targeted regionswas1273. Togenerate

high-quality genotype calls for analysis, we removed reads with

map quality < 20 prior to variant calling with the University of

Michigan’s multisample SNP-calling pipeline UMAKE (H.M.K.

and G.J., unpublished data). To reduce the number of sequencing

variants miscalled because of sequencing and alignment artifacts,

the UMAKE pipeline uses a support vector machine (SVM)21 to

exclude likely sequencing artifacts by using a battery of SNPquality

metrics (Table S9). These include allelic balance (the proportional

representation of each allele in likely heterozygotes), base quality

distribution for sites supporting the reference and alternate alleles,

and the distribution of supporting evidence between strands and

sequencing cycle, among others. We used variants identified by

dbSNP or 1000 Genomes as the positive training set and used vari-

ants that failed multiple filters as the negative training set. We

found this method to be effective at removing sequencing artifacts

while preserving good-quality data, as indicated by the Ti/Tv ratio

forpreviously knownandnewly identifiedvariant sites, thepropor-

tion of high-frequency variants overlapping with those in dbSNP,

and the ratio of synonymous to nonsynonymous variants, as well

as attempts at validation of a subset of sites. With the use of SVM

filtering, 19,775 coding variants (5.72%) were removed.21 The

genotype concordance rate among five duplicate pairs blindly

sequenced at both sequencing centerswas 99.97%, and the concor-

dance of nonhomozygous reference genotype calls was 98.97%.

The genotype concordance rate for 289 AA samples genotyped at

5,051 autosomal markers with Metabochip was 98.8%, and geno-

type concordance was 98.7% for 526markers withminor allele fre-

quency (MAF) < 1%. Allelic concordance rates were 99.39% for all

markers and 99.3% for variants with MAF < 1%.

Stage 2 samples were exome sequenced with the same technical

and bioinformatics pipeline as those in stage 1, although variants

were called and filtered as a separate batch.We only analyzed stage

2 genes that reached p < 1 3 10�5 in stage 1.

To reduce any differences between samples sequenced at

different centers, we called variants only for the targeted region

of the sample and marked them as missing if they were outside

the target region. Although we initially observed a batch effect

between sequencing centers, this was essentially eliminated, as

determined from quantile-quantile plots, by the application of a

call-rate filter. We used SVM filtering to further refine the results

and sawno significant evidence of differences between sequencing

centers. All extreme-LDL-C samples were sequenced at the UW.
an Journal of Human Genetics 94, 233–245, February 6, 2014 235



We attempted calling insertion-deletion polymorphisms with

SAMtools;22 however, the concordance rate of the resultant indel

calls was only 70.9% among our duplicate pairs, so we excluded

these calls from this analysis.
QC of Individual Participant Samples
We identified related individuals by applying a maximum-likeli-

hood algorithm23 as implemented in RelativeFinder and by

examining the mean and SD of the identity-by-state estimate for

putative first- or second-degree relatives. In each groupof related in-

dividuals,we prioritized (1) individualswith extreme LDL-C and (2)

the individual with the highest genotype call rate and excluded all

putative first- or second-degree relatives (n ¼ 35). We determined

thenumberof sequenced reads thatmapped to theYandXchromo-

somes, grouped the ratio of Y and X chromosome reads into two

clusters, and excluded outliers on the basis of their reported sex

(n ¼ 3, Figure S2). We performed principal-component analysis as

implemented in the PLINK software package24 and used the first

and second principal components (PC1 and PC2, respectively) as

covariates for all analyses. PC1 had a squared correlation of 0.988

with estimates of European ancestry among AA samples (ancestry

estimated with SEQMIX). Of 2,038 individuals with exome

sequence data, 2,005 (including 554 LDL-C extremes) passed all

sample-level QC and were included in the final analyses (Table S1).
Variant Annotation
We used ANNOVAR25 with GENCODE genes (v.7; UCSC Genome

Browser, hg19) to annotate variants as nonsense, splice, read-

through, missense, synonymous, UTR, or noncoding and selected

the most deleterious annotation for each variant (i.e., if missense

in one transcript and synonymous in another, the variant was

considered to be missense). We considered splice variants to be

those that altered either the first two or the last two nucleotides of

an intron (essential splice donor and acceptor sites). The following

RefSeq accession numbers were used for annotating variants in sig-

nificant genes: NM_000384.2 (APOB), NM_001195802.1 (LDLR),

NM_174936.3 (PCSK9), and NM_138814.3 (PNPLA5).

In stage 1, we identified 588,226 genetic variants in the protein-

coding regions of genes (exome). Of these, 3,093 (0.5%) were

splice variants, 6,958 (1.1%) were nonsense variants, 345,569

(58.5%) were missense variants, and 232,182 (39.5%) were synon-

ymous variants (Table 1). On average, each EA individual had 16.6

splice variants, 46.9 nonsense variants (stop-gained), 15.9 read-

through variants (loss of stop codon), 5,865 missense variants,

and 7,089 synonymous variants. By comparison, each AA individ-

ual had, on average, 24.0 splice variants, 53.5 nonsense variants,

17.7 read-through variants, 7,284 missense variants, and 9,113

synonymous variants. The number of unique variants (not seen

in any other individual in our study) also differed by ethnic group.

Each EA individual had, on average, 1 unique splice variant, 2.5

unique nonsense variants, and 91 unique missense variants. AA

individuals had an average of 1 unique splice variant, 2.4 unique

nonsense variants, and 110 unique missense variants (Table S8).
Single-Variant Association Tests
Single-variant tests for medication-adjusted LDL-C were performed

by linear regression with covariates for age, sex, ethnicity (AA versus

EA),primaryphenotype (early-onsetmyocardial infarctioncases and

controls, ischemic stroke cases, blood-pressure extremes, BMI, and

random set), and PC1 and PC2 as implemented in PLINK.24 We

excluded variants with a genotype call rate< 50% and MAF < 1%.
236 The American Journal of Human Genetics 94, 233–245, February
Burden Tests
Burden tests that aggregated certain classes of variants within

each gene across the genome were performed with the combined

multivariate and collapsing (CMC) test26 with multiple frequency

thresholds for variant inclusion (MAF < 5%, 1%, 0.5%, and

0.1%) and different classes of variants: (1) nonsynonymous and

splice and (2) loss of function (LoF; nonsense, read-through,

and splice)—only for MAF < 5%. We used multiple frequency

thresholds because the inclusion of low-frequency benign variants

might have diluted a signal seenwith a small number of functional

rare variants, but we also wanted to test low-frequency variants

because these would be present in higher numbers of individuals

and might be functional. Because we expected most LoF variants

to be functional, we opted to use only a single frequency threshold

(MAF< 5%).We used a CMCmodel that assigns samples as carriers

or noncarriers of rare variants in a particular gene and tests for asso-

ciation with LDL-C values by using a linear regression model.26

LDL ¼b0 þ b1burden scoreþ b2ageþ b3sexþ b4PC1 þ b5PC2

þ b6ethnicityþ b7ESP phenotype:

The effect sizes for the burden of rare variants (shown in Table 2)

were estimated in all samples with the same model. We considered

estimatingeffect sizes fromthenonextreme samplesonly,but this re-

sulted in the exclusionofmany individualswho carry rare variants at

these genes (seven out of eight carriers at APOB were excluded, for

example). Instead, we estimated the aggregate effect sizes from the

entire sample, including extreme individuals, which might have

resulted in upwardly biased estimates. Extremely large population-

based samples will be required to provide unbiased effect-size esti-

mates for very rare variants, which are currently unavailable. We

tested for heterogeneity between aggregate effect sizes in AA and

EA samples by performing analyses separately in AA and EA samples

and then explicitly testing for heterogeneity (METAL).27

We also performed a test that allows for opposite directions of

effect for variants within a single gene (optimized sequence kernel

association test [SKAT-O]).28 We analyzed three classes of variants:

(1) LoF with MAF < 5%, (2) LoF and missense variants predicted

by PolyPhen-2 to be ‘‘probably damaging’’ with MAF < 5%, and

(3) missense and LoF variants with MAF < 5%. For each gene,

we selected the minimal p value across all burden tests.

We set the threshold for exome-wide significance to be p < 5 3

10�7 to account for a Bonferroni-corrected p value for 88,113 gene

tests performed (eight burden tests of up to 16,141 genes, Table S7

and Figure S3). Allele frequencies used for the inclusion cutoffs

were estimated from all individuals (AA and EA combined) from

the ESP5500,10 a superset that was drawn from the same cohorts

as the samples examined here, had a similar ethnic make-up,

and was exome sequenced at the same time as the LDL-C samples.

Not all samples had LDL-C available, but we utilized in either

stage 1 or stage 2 every ESP sample with LDL-C available. Burden

tests were performed with covariates for ethnicity, age, sex, PC1,

PC2, and ESP primary ascertainment (extreme LDL-C, BMI,

extreme blood pressure, deeply phenotyped resource, early-onset

myocardial infarction cases, early-onset myocardial infarction

controls, and ischemic stroke). A score test was used for deter-

mining significance levels. Where genotypes were missing, we

assigned the average allele frequency of the genotyped individ-

uals. The rate of imputed genotypes at rare variants in the four

known lipid genes ranged from 0.6% for APOB to 7.8% for PCSK9.

We observed no inflation of burden-test statistics (Figure S4). To

further test the robustness of our results, we applied a variety of
6, 2014



Table 1. Study Sample: Stages 1 and 2

AA Individuals EA Individuals

All Sequenced
Samples (EA and AA)

Total
No. of
DNA
Samples

Population-
Based
Samples
Sequenced

Extremely
High LDL-C
Sequenced

Extremely
Low LDL-C
Sequenced

AA
Sequenced
Samples

Total
No. of
DNA
Samples

Population-
Based
Samples
Sequenced

Extremely
High LDL-C
Sequenced

Extremely
Low LDL-C
Sequenced

EA
Sequenced
Samples

Stage 1

n 17,628 591 151 110 854 44,987 860 156 137 1,151 2,005

Mean LDL-C (SD) - 138.9 (34.1) 243.0 (31.9) 52.7 (12.6) 143.7 (60.9) - 131.8 (31.2) 265.8 (48.6) 50.1 (13.8) 140.0 (64.7) 142.8 (63.7)

Range - 57–230 195–398 22–78 22–398 - 46–224 180–479 14–80 14–479 14–479

Stage 2

n 4,422 685 96 81 862 5,000 316 61 63 440 1,302

Mean LDL-C (SD) - 140.7 (33.4) 246.1 (48.5) 53.7 (16.3) 144.3 (55.7) - 131.2 (27.6) 228.4 (37.9) 54.9 (15.3) 133.8 (54.0) 140.7 (55.4)

Range - 70–230 195–472 12–79 12–472 - 74–201 189–406 20–91 20–406 12–472

Stages 1 and 2

n 22,050 1,276 247 191 1,714 49,987 1,176 217 200 1,593 3,307

Mean LDL-C (SD) - 139.9 (33.7) 244.2 (39.1) 53.2 (14.3) 145.3 (58.9) - 131.7 (30.2) 255.3 (48.8) 51.6 (14.4) 138.5 (62.2) 142.0 (60.6)

Range - 57–230 195–472 12–79 12–472 - 46–224 180–479 14–91 14–479 12–479

Abbreviations are as follows: AA, African American; and EA, European American.
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associationmodelswithdifferent covariates and found the results to

bequite similar (Table S10).Theassociationpvalue forAPOBwas the

most variable, and we expect that this was because the APOB signal

was driven by only eight individuals with LoF variants in stage 1.

Sequencing-Based Follow-Up in Go-T2D
The Genetics of Type 2 Diabetes (Go-T2D) study aims to charac-

terize the genetic architecture of type 2 diabetes and related

quantitative traits through low-coverage (43) whole-genome

sequencing, deep (~703) exome sequencing, and 2.5M SNP geno-

typing of 1,425 cases and 1,425 controls from four European

cohorts: FUSION, DGI, WTCCC, and KORA. Genotypes were

called for each technology and integrated into a single data set.

In total, 27.4 million SNPs, 1.5 million indels, and 12,000 struc-

tural variants passed the QC filters. For the current analysis, we

included 2,084 individuals with LDL-C measurements available.

We estimated the pretreatment LDL-C levels for individual sam-

ples (n ¼ 300) reported to be on LDL-lowering medication (14.4%)

by dividing by 0.75. We performed a burden test for PNPLA5 (MIM

611589) variants with an observed MAF < 1% (n ¼ 9, all SNPs) by

using theCMC test26with covariates for age, sex, type 2 diabetes sta-

tus, study site, and PC1 and PC2 derived from 2.5M SNP genotypes.

Follow-Up Using HumanExome Beadchip Array
Genotyping-based follow-up was performed with the Illumina

HumanExome Beadchip array in 12 studies: ARIC11 (n ¼ 2,955 AA

and 10,488 EA individuals), CROATIA-Korcula29 (n ¼ 843 EA indi-

viduals), JHS (n¼ 2,139 AA individuals), Family Heart Study30 (n¼
1,862 EA individuals), Age, Gene/Environment Susceptibility-

Reykjavik Study 31 (n ¼ 2,972 EA individuals), CHS13 (n ¼ 750 AA

and 4,021 EA individuals), Rotterdam Baseline32 (n ¼ 1,681 EA

individuals), FHS33 (n ¼ 6,946 EA individuals), CARDIA12 (n ¼
1,886 AA and 2,131 EA individuals), WHI17 (n ¼ 2,142 AA and

4,005 EA individuals), Nord-Trondelag Health Study34 (n ¼ 5,869

EA individuals), and BioMe Clinical Care Cohort at Mount Sinai

Medical Center in New York City (n¼ 1,091 EA and 1,974 AA indi-

viduals). Unfortunately, many individuals from the ESP also had

Illumina HumanExome Beadchip genotypes by CHARGE, and

these could not be removed from the analysis. To account for this,

we did not meta-analyze the exome sequence and HumanExome

samples together.Whenmedicationusewasavailable,weestimated

pretreatment LDL-C measures for individuals on lipid-lowering

medication by dividing by 0.75. Burden tests were performed with

the same variant definition as the optimal test from stage 1 (e.g.,

nonsynonymous and splice variants with frequency < 0.1% for

LDLR, etc.). Frequencies were estimated within each study. Results

were combined with a SE-weighted meta-analysis (METAL27).
Results

Exome Sequencing in Discovery Sample

We performed exome sequencing in 2,005 individuals in

stage 1; 854 (43%) were AA, and the remainder (n ¼ 1,153

[57%]) were EA.We enriched the sample of sequenced indi-

viduals by oversampling individuals with extreme LDL-C

levels: <1st percentile and >99th percentile for EA

and<2nd percentile and>98th percentile for AA individuals

(Table 1 and Table S1). After QC, 554 individuals with

extreme LDL-C levels were successfully exome sequenced:

151 AA individuals with high LDL-C, 110 AA individuals
238 The American Journal of Human Genetics 94, 233–245, February
with low LDL-C, 156 EA individuals with high LDL-C, and

137 EA individuals with low LDL-C. This represents a

9-foldenrichmentof individualswithextremeLDL-C levels.

Single-Variant Association Tests Detect Only APOE

Variants

We initially examined association between LDL-C levels and

each exonic variant with MAF > 1%. Only one SNP located

near APOE and highly correlated with rs7412, which com-

prises the APOE ε2/ε3/ε4 haplotype together with rs429358,

was genome-wide significant (rs1160983, p ¼ 7.6 3 10�14,

Table S2). Given that this association signal is well known,

we focused on other statistical tests that have greater

statistical power to detect association with rare variation.

Gene-Based Burden Tests in Discovery Sample Identify

Three Known Genes

We hypothesized that functional variants have lower fre-

quencies on average, and we therefore applied gene-based

burden tests that evaluate the aggregate effects of variants

with a low MAF. We hypothesized that different genes

might have different gene-specific underlying genetic

architecture, and we thus used eight burden tests. The first

four tests were CMC tests26 of missense and putative LoF

variants at four MAF thresholds (MAF < 5%, 1%, 0.5%,

and 0.1%), and the fifth was a CMC test of LoF variants

only (MAF < 5%). The sixth test was a SKAT-O28 for

missense and LoF variants (MAF < 5%), the seventh was

a SKAT-O for ‘‘probably damaging’’ missense and LoF vari-

ants (MAF < 5%), and the eighth test was a SKAT-O for LoF

variants only (MAF < 5%). Among the 2,005 sequenced

exomes, we identified variants in 16,933 genes; 16,141 of

these genes had aminimum of five individuals who carried

at least one LoF or missense variant with MAF < 5%. We

defined putative LoF variants as nonsense, splice donor

site, splice acceptor site (within two nucleotides of exon

boundary), or read-through variants.

To account for the multiple testing that results from the

variousgene-based tests,we selecteda significance threshold

of p< 53 10�7 to reflect Bonferroni correction for the total

number of gene-burden tests performed (88,113 tests, Table

S7), althoughweexpect that this thresholdwas conservative

because the testswerenot independent. For eachgene-based

burden test that reached this significance threshold, we

selected as optimal the model that resulted in the most

significant p value (Table 2 and Table S7).

In stage 1 alone, burden tests for three genes previ-

ously reported to be associated with LDL-C reached the

threshold for exome-wide significance. All three associated

genes were confirmed in the combined analysis after

follow-up sequencing: PCSK9 (p ¼ 3 3 10�18), LDLR (p ¼
3 3 10�13), and APOB (p ¼ 2 3 10�10).

Follow-Up Using Exome Sequencing Implicates

PNPLA5 in LDL-C

For 17 gene-based burden tests that reached p < 5 3 10�5

in the discovery sample, we analyzed sequence data in an
6, 2014
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The Am
eric
additional 1,302 individuals by using the same technology

and analysis pipelines. The sequencing follow-up sample

had a similar level of enrichment for extreme individuals

and a similar proportion of AA individuals (Table 1 and

Table S1) as the discovery set. In a meta-analysis of

sequencing-based discovery and follow-up samples, 4 of

17 genes reached exome-wide significance, including the

burden of variants in three genes identified in the dis-

covery alone. Using a burden test for rare (MAF < 0.1%)

LoF and missense variants, we identified one gene that is

not known to be associated with lipid levels: PNPLA5

(p ¼ 3 3 10�7, effect size ¼ 43.1 mg/dl, SE ¼ 8.7, Table 2

and Table S3). Among all individuals with extremely

high LDL-C, 3.1% carry a rare missense variant in PNPLA5;

in contrast, 1.2% of nonextreme individuals and 0.5% of

individuals with extremely low LDL-C carry such a variant.

The impact of carrying a raremissense variant in PNPLA5 is

an increase in LDL-C by 43.1 mg/dl (SE ¼ 8.7).

PNPLA5 encodes a member of the patatin-like phospho-

lipase-domain-containing family. The proteins in this

family share a Gly-X-Ser-X-Gly domain, and members

1–5 act as triacylglycerol lipases. PNPLA5 is adjacent to

PNPLA3, and the c.444C>G (p.Ile148Met) variant

(rs738409) in PNPLA3 has been implicated in nonalcoholic

fatty-liver disease35 (NAFLD [MIM 613282 and 613387]).

No variants near these genes were identified by GWASs

of >94,000 individuals for LDL-C9 (Figure S5). In the cur-

rent study, the PNPLA3 variant previously associated with

NAFLDwas not associatedwith LDL-C (p¼ 0.15 in stage 1).

Replication of PNPLA5 in an Independent Study

TheassociationbetweenLDL-Cand rarevariants inPNPLA5

was evaluated in anadditional large-scale sequencing study;

the Go-T2D project performed low-pass whole-genome,

deep exome sequencing and 2.5M SNP genotyping of

2,084 individuals of Northern European descent with esti-

mated pretreatment LDL-C available. In this sample, ten in-

dividuals carriedninedifferentPNPLA5nonsynonymousor

splice variants with a frequency < 0.1%. In this additional

replication sample, the burden of these rare variants was

associated with LDL-C levels (p ¼ 0.040). Compared to

those without rare variants, individuals with rare variants

showed a substantial mean increase in LDL-C with the

same direction as observed in the samples from ESP stages

1 and 2 (Go-T2D: effect ¼ 26.0 mg/dl, SE ¼ 12.8; ESP com-

bined stages 1 and 2: effect ¼ 43.1 mg/dl, SE ¼ 8.7).

Genetic Architecture of Associated Genes

We examined the variants that contributed to each gene-

level association with LDL-C. In PCSK9, which encodes a

convertase that mediates degradation of the LDL-C recep-

tor,36 we observed the strongest association with LoF vari-

ants with MAF < 5%. LoF variants in PCSK9 were present

in 13.0% of AA individuals with extremely low LDL-C yet

only 0.4% with extremely high LDL-C and 1.9% with

nonextreme LDL-C. The burden of LoF variants was associ-

ated with decreased LDL-C levels (p ¼ 3 3 10�18,
an Journal of Human Genetics 94, 233–245, February 6, 2014 239



effect¼�72.2 mg/dl, SE¼ 8.3). A larger proportion of indi-

viduals (19.1%) carried either a missense or a LoF variant,

and carrier status for this broader class of variants was also

strongly associated with LDL-C levels (p ¼ 7 3 10�17),

although with a smaller effect size (�22.3 mg/dl, SE ¼ 2.9).

Sequencing identified nine previously unreported vari-

ants found exclusively in individuals with extremely low

LDL-C (eight missense variants and one nonsense variant)

and not present in databases of clinically relevant muta-

tions37: c.214T>G (p.Trp72Gly), c.470A>G (p.Asn157Ser),

c.721G>A (p.Val241Met), c.1180G>A (p.Gly394Ser),

c.1427G>A (p.Arg476His), c.1492G>A (p.Glu498Lys),

c.1496G>T (p.Arg499Leu), c.1855C>T (p.Gln619Ter),

and c.1991C>T (p.Thr664Ile). Two low-frequency PCSK9

alleles with modest effect sizes have been previously

described38—c.137G>T (p.Arg46Leu), which has a fre-

quency of 1.6% in EA individuals, and c.1327G>A

(p.Ala443Thr), which has a frequency 8.4% in AA individ-

uals—andburden tests that included these variants revealed

significant association with LDL-C (Table 2 and Table S3).

In contrast, association with LDLR (p ¼ 3 3 10�13) was

driven by a burden of rare missense and LoF variants

with MAF < 0.1% (burden frequency ¼ 2.4%) (Table 2

and Table S3). Although LDLR is one of the most

frequently resequenced genes and has over 1,122 variants

previously identified (LOVD database37), we identified

three previously unreported variants in the 307 individuals

with extremely high LDL-C (Table S5B). Among individ-

uals with extremely high LDL-C, 6.9% carried a rare

missense or LoF variant in LDLR; in contrast, 2.0% of indi-

viduals with nonextreme LDL-C and 0.8% of individuals

with extremely low LDL-C had such a variant. The impact

of the burden of these rare variants was an increased LDL-C

(effect ¼ 40.8 mg/dl, SE ¼ 6.5).

We identified association with APOB when we included

a burden of LoF variants (p ¼ 2 3 10�10), but not when

we included missense variants (stage 1 p ¼ 0.35, Table

S7). APOB encodes apolipoprotein B, which is the main

apolipoprotein for chylomicrons and LDL-C. We identi-

fied 12 LoF variants, and 11 were seen in individuals

with extremely low LDL-C (11/12, observed effect ¼
�98 mg/dl, Table S5C). None of these 12 variants were

included in dbSNP, 1000 Genomes, or the International

HapMap Project prior to our sequencing efforts.

ExaminingOther Genes AssociatedwithDyslipidemia

We also examined five candidate genes recognized as asso-

ciated with Mendelian forms of high or low LDL-C.4 Two

genes, ABCG539 and NPC1L1,8 exhibited suggestive evi-

dence (p < 4 3 10�4) of association with LDL-C with the

use of burden tests in stage 1 (Table S3). Individuals with

low-frequency (MAF < 5%) missense or LoF variants in

ABCG5 had increased LDL-C (p¼ 23 10�4), whereas those

with rare NPC1L1 variants (MAF < 0.5%) had decreased

LDL-C (p ¼ 3 3 10�4). However, the evidence of associa-

tion decreased after the inclusion of stage 2 results for

both ABCG5 (p¼ 83 10�3) andNPC1L1 (p¼ 0.02). Burden
240 The American Journal of Human Genetics 94, 233–245, February
tests for LDLRAP1,MTTP, ANGPTL3, and ABCG8 exhibited

no evidence of association (p > 0.20).

We separately examined genes near GWAS regions. We

selected 192 genes that fall within the associated region

at 54 LDL-C-associated loci.40 We examined the five pri-

mary gene-based burden-test results (with the CMC test)

for this subset of genes, and after performing Bonferroni

correction (for 757 tests), we identified significant associa-

tion (p < 7 3 10�5) only with LDLR and PCSK9.

Heterogeneity in Frequency of Variants by Ethnicity

To identify genes with heterogeneous effects or burden-fre-

quency differences between EA and AA individuals, we also

examined the association between coding variants and

LDL-C within each ethnicity. We did not observe any genes

that reached exome-wide significance in ethnic-specific ana-

lyses in either stage 1 or the combined stages 1 and 2,

although APOB LoF mutations were primarily observed in

EAindividuals (11/12).Weexplicitly tested forheterogeneity

between the burden effect size observed in AA and EA indi-

viduals and found no significant difference (all p > 0.05).

To quantify the advantages of a multiethnic study design,

we estimated the power to detect significant evidence of

association if our study design had included only a single

ethnic group but still had the same stage 1 sample size and

enrichment of extremes (n ¼ 2,005, Table S6). Power

estimates were based on the observed ethnic-specific effect

sizes for the rare-variant burden in each gene, as well as the

rare-variant burden frequencies in each ethnicity, for the

four LDL-C-related genes (Table S3). A sample consisting

entirely of AA individuals has >80% power to detect

association with two genes at a threshold of 1 3 10�6:

PCSK9 and PNPLA5. An entirely EA sample of the same size

has >80% power to detect association with LDLR and

APOB (Table S6). We also demonstrated the power to detect

association in the combined samples from stages 1 and 2

for each ethnicity, and we note the substantially higher

burdeneffect size for these genes than for variants discovered

by GWASs (Figure 1).

Genotyping-Based Follow-Up in Large Sample Sizes

Confirms Two Genes

To perform additional follow-up, we repeated our two-stage

study of gene-based burden tests and focused only on vari-

ants that appear on the Illumina Infinium HumanExome

BeadChip. Using this subset of variants (seven genes over-

lappedwith the sequencing-based follow-up), we identified

15 genes that reached p < 5 3 10�5 in our stage 1 samples.

We used the Illumina HumanExome Beadchip to perform

genotype-based follow-up in 52,221 individuals (n ¼
11,912 [22.8%] AA individuals) for these 15 genes (Table

S4) by using a SE-weightedmeta-analysis.Whenwe consid-

ered variants that were present on the array in these addi-

tional population-based samples, only two genes reached

Bonferroni-adjusted significance (p < 0.003): PCSK9 (p ¼
2 3 10�36) and LDLR (p ¼ 5 3 10�17). In several of the

contributing cohorts (n¼ 44,783), we repeated burden tests
6, 2014



Figure 1. Effect Sizes Observed for Gene-Based Burden Tests Relative to GWAS Variants
Effect sizes are shown in SD units for genes identified by burden tests of nonsynonymous (NS) and splice variants (blue), LoF variants
only (red), andGWAS variants (black) fromWiller et al.40 For genes, the burden effect sizes and burden frequencies are plotted. For GWAS
variants, the observed effect sizes andMAFs are plotted. The burden frequencies for the gene-based tests (red and black) were observed in
this study, whereas the GWAS-variant frequencies are plotted as reported inWiller et al.40 The alpha level was set to 53 10�7 to reflect the
significance threshold used for gene-based burden tests.
while excluding LDLR variants that were too rare for inclu-

sion on the exome array but that had been specifically

nominated by the ESP-LDL working group for the array

because they had a single copy present in our data in a

known gene. Excluding these rare variants attenuated the

association with LDLR (p ¼ 2 3 10�3) versus the burden of

all variants on the chip (p¼ 33 10�12) in the same samples,

suggesting that genotyping arrays are not ideal for replica-

tion of genes identified by sequencing and driven by rare

variants with MAF < 0.1%, such as PNPLA5.
Discussion

We report the results of comprehensive, high-coverage

exome sequencing of a total of 2,005 individuals with

LDL-C levels and present clear evidence that uncommon

and rare variants contribute to variation of LDL-C levels

in the general population. Our major specific findings are

(1) the identification of PNPLA5, (2) the identification

of known and previously unidentified variants in three

known LDL-C-associated genes (LDLR,6 PCSK9,7 and

APOB41), and (3) the observation that associated variants

have a range of MAF and putative functional importance

necessitating a variety of analytic approaches for opti-

mizing gene discovery from sequence data.

The genetic architecture of rare variants underlying the

association with LDL-C differed for each of the four LDL-

C-associated genes (Figure 2). The associated variants

ranged from single-copy nonsense variants in APOB to

low-frequency missense variants in PCSK9. The types of

variants associated with LDL-C in the four genes varied

with respect to the consequence to the protein (missense
The Americ
versus splice or premature stop), direction of effect, allele

frequency, and effect size. As a result, no single gene-based

association test detected all four of the associated genes

(Table S7). These findings suggest that a variety of burden

tests that examine different categories of putatively func-

tional variants defined by frequency and predicted func-

tion will have the most success at finding association

with complex diseases and related phenotypes. For

example, a simple burden test considering missense and

LoF variants with frequency less than 1%would have iden-

tified only one gene in stage 1 (PCSK9, p ¼ 8 3 10�7). Not

surprisingly, the effect sizes observed for variants predicted

to cause LoF of the protein were higher than those

observed for missense mutations in both PCSK9 and LDLR.

The effect sizes (ranging from 0.4 to 1.9 SDs, correspond-

ing to ~24–116 mg/dl) observed for burden tests of the four

associated genes were substantially higher than those

observed for variants discovered by GWASs.40 Furthermore,

theproportionof trait varianceexplainedbythese fourgenes

was ~5.4%, which is substantial when compared to 10%–

12% explained by ~95 variants discovered by GWASs.9

Furthermore, ~16%of the population-based samples carried

a putatively functional variant in one of these four genes.

Although we expect additional rare and low-frequency

variants with more modest effect sizes to be discovered in

larger sequencing studies, we can be reasonably confident

that there are no common variants with effect sizes in the

range of what we observed here. Such variants would have

had a very high probability of being observed by GWASs.

We identified variants in LDLR and PCSK9 in both EA

and AA individuals, whereas in APOB and PNPLA5, the

evidence of association with LDL-C was primarily within

one ancestry group. These observations suggest that for
an Journal of Human Genetics 94, 233–245, February 6, 2014 241



Figure 2. LDL-C Values for Individuals with
Different Types of Genetic Variants in Four
LDL-C-Associated Genes
A representation of LDL-C values for each indi-
vidual with a rare variant in (A) PCSK9, (B)
LDLR, (C) APOB, or (D) PNPLA5. The left side
of the figure shows LDL-C levels per individual
with a rare allele in the gene. On the right,
bean plots indicate the mean (black line) and
distribution (bean shape) of LDL-C values for
individuals with a LoF variant, a missense
variant, or no rare variant.
(A) Individuals classified on the basis of vari-
ants in PCSK9 (MAF < 5% is considered rare).
(B) Individuals classified by carrier status of
variants in LDLR (MAF < 0.1% is considered
rare on the basis of themost significant burden
test for this gene).
(C) Individuals classified by genetic status at
APOB (MAF < 5% is considered rare).
(D) Individuals with a rare variant in PNPLA5
(nonsynonymous or splice with MAF < 0.1%)
are shown.
any complex trait, there will most likely be a subset of

genes whose contribution will be most effectively identi-

fied in particular ancestry groups. We did not observe
242 The American Journal of Human Genetics 94, 233–245, February 6, 2014
heterogeneity in effect sizes between

ancestry groups but did observe differ-

ences in the proportion of individuals

carrying risk alleles between ancestry

groups (on average, higher levels of rare

variants were observed in AA samples).

Rare coding variants in two of the four

genes (PCSK9 and APOB) were associated

with low LDL-C, whereas rare variants in

the remaining two genes (PNPLA5 and

LDLR) were associated with high LDL-C.

This finding demonstrates the impor-

tance of selecting from both tails of the

distribution to identify variants that pre-

dispose to high LDL-C and a presumed

increased risk of cardiovascular disease,

as well as variants associated with

extremely low LDL-C and a lowered risk

of cardiovascular disease. Although we

could not detect significant association

in the extreme samples alone, the addi-

tion of samples and analysis of LDL-C as

a quantitative trait improved power.

The combined sample size of 3,302

sequenced samples was required for iden-

tifying significant association with a gene

not known to be implicated in LDL-C:

PNPLA5. We anticipate that even larger

sample sizes will be required for identi-

fying additional genes with rare variants.

High-throughput genotyping will allow

testing of low-frequency, and possibly

rare, coding variation in large samples
but will most likely fail to detect genes that have allelic het-

erogeneity of very rare variants—as was observed for APOB

and PNPLA5. Although we did observe association with



LDLR by using the genotyping array, this might have been

due to sample overlap between the genotyping follow-up

and ESP samples. We specifically included all discovered

LDLR variants on the genotyping array, irrespective of their

frequency, which substantially increased the evidence of

association in these samples (p ¼ 3 3 10�12 with these

variants and p ¼ 2 3 10�3 without).

In summary, this exome sequencing study establishes

that among ~17,000 genes examined, LDLR, PCSK9,

APOB, and PNPLA5 show the strongest evidence of a

burden of rare or low-frequency coding variants influ-

encing LDL-C. Elements of our study design, such as

samples from different ethnicities, categorizing variants

on the basis of different frequencies and function, and

enriching our sample with both high and low phenotypic

extremes, improved our ability to identify genes that

contribute to LDL-C. Ultimately, functional studies will

be required for uncovering the biological roles of these

genes and variants in determining LDL-C levels.
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