160 research outputs found

    Mimicry in Cretaceous Bugs

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Mimicry is ubiquitous in nature, yet understanding its origin and evolution is complicated by the scarcity of exceptional fossils that enable behavioral inferences about extinct animals. Here we report bizarre true bugs (Hemiptera) that closely resemble beetles (Coleoptera) from mid-Cretaceous amber. The unusual fossil bugs are described as Bersta vampirica gen. et sp. nov. and Bersta coleopteromorpha gen. et sp. nov. and are placed into a new family, Berstidae fam. nov. The specialized mouthparts of berstids indicate that they were predaceous on small arthropods. Their striking beetle-like appearance implies that they were either involved in defensive mimicry or mimicked beetles to attack unsuspecting prey. The latter would represent the first case of aggressive mimicry in the invertebrate fossil record. These findings enrich our understanding of the paleoecological associations and extinct behavioral strategies of Mesozoic insects.Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26000000 and XDB18000000)National Natural Science Foundation of China (41672011 and 41688103)Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0706

    Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization

    Full text link
    Arthropods, the most diverse form of macroscopic life in the history of the Earth, originated in the sea. Since the early Cambrian, at least ~518 million years ago, these animals have dominated the oceans of the world. By the Silurian-Devonian, the fossil record attests to arthropods becoming the first animals to colonize land, However, a growing body of molecular dating and palaeontological evidence suggests that the three major terrestrial arthropod groups (myriapods, hexapods, and arachnids), as well as vascular plants, may have invaded land as early as the Cambrian-Ordovician. These dates precede the oldest fossil evidence of those groups and suggest an unrecorded continental 'Cambrian explosion' a hundred million years prior to the formation of early complex terrestrial ecosystems in the Silurian-Devonian. We review the palaeontological, phylogenomic, and molecular clock evidence pertaining to the proposed Cambrian terrestrialization of the arthropods. We argue that despite the challenges posed by incomplete preservation and the scarcity of early Palaeozoic terrestrial deposits, the discrepancy between molecular clock estimates and the fossil record is narrower than is often claimed. We discuss strategies for closing the gap between molecular clock estimates and fossil data in the evolution of early ecosystems on lan

    A specialized prey-capture apparatus in mid-Cretaceous rove beetles

    Get PDF
    Cai et al. report specialized prey-capture structures in two species of the stenine rove beetles from mid-Cretaceous Burmese amber. The discovery provides critical information about the origin and early evolution of both the novel predatory structure and of the subfamily Steninae (Coleoptera: Staphylinidae)

    Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian-Triassic co-origination with insectivores

    Get PDF
    Stick and leaf insects (Phasmatodea) are a distinctive insect order whose members are characterised by mimicking various plant tissues such as twigs, foliage, and bark. Unfortunately, the phylogenetic relationships among phasmatodean subfamilies and the timescale of their evolution remain uncertain. Recent molecular clock analyses have suggested a Cretaceous-Palaeogene origin of crown Phasmatodea and a subsequent Cenozoic radiation, contrasting with fossil evidence. Here we analysed transcriptomic data from a broad diversity of phasmatodeans and, combined with the assembly of a new suite of fossil calibrations, we elucidate the evolutionary history of stick and leaf insects. Our results differ from recent studies in the position of the leaf insects (Phylliinae), which are recovered as sister to a clade comprising Clitumninae, Lancerocercata, Lonchodinae, Necrosciinae, and Xenophasmina. We recover a Permian to Triassic origin of crown Phasmatodea coinciding with the radiation of early insectivorous parareptiles, amphibians, and synapsids. Aschiphasmatinae and Neophasmatodea diverged in the Jurassic–Early Cretaceous. A second spur in origination occurred in the Late Cretaceous, coinciding with the Cretaceous Terrestrial Revolution, and was likely driven by visual predators such as stem birds (Enantiornithes) and the radiation of angiosperms

    Fleas are parasitic scorpionflies

    Get PDF
    Tihelka, Erik, Giacomelli, Mattia, Huang, Di-Ying, Pisani, Davide, Donoghue, Philip C. J., Cai, Chen-Yang (2020): Fleas are parasitic scorpionflies. Palaeoentomology 3 (6): 641-653, DOI: 10.11646/palaeoentomology.3.6.1
    • …
    corecore