823 research outputs found

    Integration of advanced simulation and visualization for material processing

    Get PDF

    Approximating the ground state eigenvalue via the effective potential

    Full text link
    In this paper, we study 1-d random Schr\"odinger operators on a finite interval with Dirichlet boundary conditions. We are interested in the approximation of the ground state energy using the minimum of the effective potential. For the 1-d continuous Anderson Bernoulli model, we show that the ratio of the ground state energy and the minimum of the effective potential approaches π28\frac{\pi^2}{8} as the domain size approaches infinity. Besides, we will discuss various approximations to the ratio in different situations. There will be numerical experiments supporting our main results for the ground state energy and also supporting approximations for the excited states energies

    A cell behavior screen: identification, sorting, and enrichment of cells based on motility

    Get PDF
    BACKGROUND: Identifying and isolating cells with specific behavioral characteristics will facilitate the understanding of the molecular basis regulating these behaviors. Although many approaches exist to characterize cell motility, retrieving cells of specific motility following analysis remains challenging. RESULTS: Cells migrating on substrates coated with fluorescent microspheres generate non-fluorescent tracks as they move and ingest the spheres. The area cleared by each cell allows for quantitation of single cell and population motility; because individual cell fluorescence is proportional to motility, cells can be sorted according to their degree of movement. Using this approach, we sorted a glioblastoma cell line into high motility and low motility populations and found stable differences in motility following sorting. CONCLUSION: We describe an approach to identify, sort, and enrich populations of cells possessing specific levels of motility. Unlike existing assays of cell motility, this approach enables recovery of characterized cell populations, and can enable screens to identify factors that might regulate motility differences even within clonal population of cells

    Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Get PDF
    Embryonic neuroepithelia and adult subventricular zone (SVZ) stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP) specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes

    Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

    Get PDF
    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size

    IMECE2002-32095 CFD ANALYSIS OF LIQUID-COOLED EXHAUST MANIFOLDS IN A REAL ENGINE CYCLE

    Get PDF
    ABSTRACT Liquid-cooled exhaust manifolds are used in turbocharged diesel and gas engines in the marine and various industrial applications in order to minimize heat rejection to surrounding areas, maximize energy to the turbocharger, and maintain a maximum allowable skin temperature. A commercial CFD software FLUENT ® was used to analyze liquid-cooled exhaust manifolds in a real time engine cycle. Detailed information of flow property distributions and heat transfer were obtained in order to provide a fundamental understanding of the manifold operation. Experimental data was compared with the CFD results to validate the numerical simulation. Computations were performed to investigate the parametric effects of operating conditions on the performance of the manifold. Two different geometries were compared. One of them was found to have better performance, resulting in an approximately 2 to 3% fuel consumption improvement. INTRODUCTION Liquid-cooled exhaust manifolds are used on turbocharged diesel engines for marine, oilrig, and other industrial applications. The purpose of cooling the manifold is to prevent possible fire hazards by maintaining a maximum safe temperature on the exposed surfaces or "skin" of the manifold. The adverse effec

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors
    corecore