24 research outputs found

    An unconventionally secreted effector from the root knot nematode Meloidogyne incognita, Mi‐ISC‐1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants

    No full text
    Plant-parasitic nematodes need to deliver effectors that suppress host immunity for successful parasitism. We have characterized a novel isochorismatase effector from the root-knot nematode Meloidogyne incognita, named Mi-ISC-1. The Mi-isc-1 gene is expressed in the subventral oesophageal glands and is up-regulated in parasitic-stage juveniles. Tobacco rattle virus-induced gene silencing targeting Mi-isc-1 attenuated M. incognita parasitism. Enzyme activity assays confirmed that Mi-ISC-1 can catalyse hydrolysis of isochorismate into 2,3-dihydro-2,3-dihydroxybenzoate in vitro. Although Mi-ISC-1 lacks a classical signal peptide for secretion at its N-terminus, a yeast invertase secretion assay showed that this protein can be secreted from eukaryotic cells. However, the subcellular localization and plasmolysis assay revealed that the unconventional secretory signal present on the Mi-ISC-1 is not recognized by the plant secretory pathway and that the effector was localized within the cytoplasm of plant cells, but not apoplast, when transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. Ectopic expression of Mi-ISC-1 in N. benthamiana reduced expression of the PR1 gene and levels of salicylic acid (SA), and promoted infection by Phytophthora capsici. The cytoplasmic localization of Mi-ISC-1 is required for its function. Moreover, Mi-ISC-1 suppresses the production of SA following the reconstitution of the de novo SA biosynthesis via the isochorismate pathway in the cytoplasm of N. benthamiana leaves. These results demonstrate that M. incognita deploys a functional isochorismatase that suppresses SA-mediated plant defences by disrupting the isochorismate synthase pathway for SA biosynthesis to promote parasitism

    An unconventionally secreted effector from the root knot nematode Meloidogyne incognita, Mi-ISC-1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants

    Get PDF
    Research Funding National Natural Science Foundation of China. Grant Numbers: 31872923, 31371922. Scottish Government Rural and Environmental Science and Analytical Services Division.Plant-parasitic nematodes need to deliver effectors that suppress host immunity for successful parasitism. We have characterized a novel isochorismatase effector from the root-knot nematode Meloidogyne incognita, named Mi-ISC-1. The Mi-isc-1 gene is expressed in the subventral oesophageal glands and is up-regulated in parasitic-stage juveniles. Tobacco rattle virus-induced gene silencing targeting Mi-isc-1 attenuated M. incognita parasitism. Enzyme activity assays confirmed that Mi-ISC-1 can catalyse hydrolysis of isochorismate into 2,3-dihydro-2,3-dihydroxybenzoate in vitro. Although Mi-ISC-1 lacks a classical signal peptide for secretion at its N-terminus, a yeast invertase secretion assay showed that this protein can be secreted from eukaryotic cells. However, the subcellular localization and plasmolysis assay revealed that the unconventional secretory signal present on the Mi-ISC-1 is not recognized by the plant secretory pathway and that the effector was localized within the cytoplasm of plant cells, but not apoplast, when transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. Ectopic expression of Mi-ISC-1 in N. benthamiana reduced expression of the PR1 gene and levels of salicylic acid (SA), and promoted infection by Phytophthora capsici. The cytoplasmic localization of Mi-ISC-1 is required for its function. Moreover, Mi-ISC-1 suppresses the production of SA following the reconstitution of the de novo SA biosynthesis via the isochorismate pathway in the cytoplasm of N. benthamiana leaves. These results demonstrate that M. incognita deploys a functional isochorismatase that suppresses SA-mediated plant defences by disrupting the isochorismate synthase pathway for SA biosynthesis to promote parasitism.Publisher PDFPeer reviewe

    Mycosubtilin Produced by <i>Bacillus subtilis</i> ATCC6633 Inhibits Growth and Mycotoxin Biosynthesis of <i>Fusarium graminearum</i> and <i>Fusarium verticillioides</i>

    No full text
    Fusarium graminearum and Fusarium verticillioides are fungal pathogens that cause diseases in cereal crops, such as Fusarium head blight (FHB), seedling blight, and stalk rot. They also produce a variety of mycotoxins that reduce crop yields and threaten human and animal health. Several strategies for controlling these diseases have been developed. However, due to a lack of resistant cultivars and the hazards of chemical fungicides, efforts are now focused on the biocontrol of plant diseases, which is a more sustainable and environmentally friendly approach. In the present study, the lipopeptide mycosubtilin purified from Bacillus subtilis ATCC6633 significantly suppressed the growth of F. graminearum PH-1 and F. verticillioides 7600 in vitro. Mycosubtilin caused the destruction and deformation of plasma membranes and cell walls in F. graminearum hyphae. Additionally, mycosubtilin inhibited conidial spore formation and germination of both fungi in a dose-dependent manner. In planta experiments demonstrated the ability of mycosubtilin to control the adverse effects caused by F. graminearum and F. verticillioides on wheat heads and maize kernels, respectively. Mycosubtilin significantly decreased the production of deoxynivalenol (DON) and B-series fumonisins (FB1, FB2 and FB3) in infected grains, with inhibition rates of 48.92, 48.48, 52.42, and 59.44%, respectively. The qRT-PCR analysis showed that mycosubtilin significantly downregulated genes involved in mycotoxin biosynthesis. In conclusion, mycosubtilin produced by B. subtilis ATCC6633 was shown to have potential as a biological agent to control plant diseases and Fusarium toxin contamination caused by F. graminearum and F. verticillioides.</i

    Effects of Whey Protein or Its Hydrolysate Supplements Combined with an Energy-Restricted Diet on Weight Loss: A Randomized Controlled Trial in Older Women

    No full text
    An energy-restricted weight-loss approach has limitations when it used in the elderly, especially because of muscle loss. We aimed to assess the effects of whey protein (WP) or WP hydrolysate (WPH) combined with an energy-restricted diet (ERD) on weight reduction and muscle preservation in older women with overweight and obesity. A total of 60 women were randomized to the control (ERD), WP (ERD + 20 g/d WP) or WPH (ERD + 20 g/d WPH) group, using a 1:1:1 allocation ratio. After an 8-week intervention, body composition, gut microbiota, and serum metabolomics changes were compared among the three groups. The reductions in body weight (&minus;1.11 &plusmn; 1.11 vs. &minus;2.34 &plusmn; 1.35, p&thinsp;&lt; 0.05), BMI (&minus;0.46 &plusmn; 0.45 vs. &minus;0.97 &plusmn; 0.54, p&thinsp;&lt; 0.05), and body fat (&minus;0.70 &plusmn; 0.92 vs. &minus;2.45 &plusmn; 1.65, p&thinsp;&lt; 0.01) were higher in the WPH group than in the control group. Body fat (%) was significantly decreased in the two protein groups. Fat-free mass did not significantly change among the three groups. Serum metabolomics showed that the tricarboxylic acid cycle pathway was upregulated in the WPH group. No significant changes in microbiota were observed among the groups. In conclusion, WP or WPH supplementation combined with an energy-restricted diet benefits older women during weight loss. WPH was more effective, possibly due to increased energy metabolism

    Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    No full text
    Background: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. Results: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 x 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 x 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 x 10(-4)) identified in the general populations, and rs113824616 (P = 7 x 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P &amp;lt; 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P &amp;lt; 0.05. Conclusion: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk

    Height and breast cancer risk: evidence from prospective studies and mendelian randomization

    No full text
    Background: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. Methods: We performed a meta-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5 216 302 women, including 113 178 events. In a consortium with individual-level data from 46 325 case patients and 42 482 control subjects, we conducted a Mendelian randomization analysis using a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16 003 case patients and 41 335 control subjects. Results: The pooled relative risk of breast cancer was 1.17 (95% confidence interval [CI] = 1.15 to 1.19) per 10 cm increase in height in the meta-analysis of prospective studies. In Mendelian randomization analysis, the odds ratio of breast cancer per 10 cm increase in genetically predicted height was 1.22 (95% CI = 1.13 to 1.32) in the first consortium and 1.21 (95% CI = 1.05 to 1.39) in the second consortium. The association was found in both premenopausal and postmenopausal women but restricted to hormone receptor-positive breast cancer. Analyses of height-associated variants identified eight new loci associated with breast cancer risk after adjusting for multiple comparisons, including three loci at 1q21.2, DNAJC27, and CCDC91 at genome-wide significance level P &amp;lt; 5 x 10(-8). Conclusions: Our study provides strong evidence that adult height is a risk factor for breast cancer in women and certain genetic factors and biological pathways affecting adult height have an important role in the etiology of breast cancer
    corecore