4 research outputs found

    IG-GAN : Interactive Guided Generative Adversarial Networks for Multimodal Image Fusion

    Get PDF
    Multimodal image fusion has recently garnered increasing interest in the field of remote sensing. By leveraging the complementary information in different modalities, the fused results may be more favorable in characterizing objects of interest, thereby increasing the chance of a more comprehensive and accurate perception of the scene. Unfortunately, most existing fusion methods tend to extract modality-specific features independently without considering inter-modal alignment and complementarity, leading to a suboptimal fusion process. To address this issue, we propose a novel interactive guided generative adversarial network, named IG-GAN, for the task of multi-modal image fusion. IG-GAN comprises guided dual streams tailored for enhanced learning of details and content, as well as cross-modal consistency. Specifically, a details-guided interactive running-in module and a content-guided interactive running-in module are developed, with the stronger modality serving as guidance for detail richness or content integrity, and the weaker one assisting. To fully integrate multi-granularity features from dual-modality, a hierarchical fusion and reconstruction branch is established. Specifically, a shallow interactive fusion module followed by a multi-level interactive fusion module is designed to aggregate multi-level local and long-range features. Concerning feature decoding and fused image generation, a high-level interactive fusion and reconstruction module is further developed. Additionally, to empower the fusion network to generate fused images with complete content, sharp edges, and high fidelity without supervision, a loss function facilitating the mutual game between the generator and two discriminators is also formulated. Comparative experiments with fourteen state-of-the-art methods are conducted on three datasets. Qualitative and quantitative results indicate that IG-GAN exhibits obvious superiority in terms of both visual effect and quantitative metrics. Moreover, experiments on two RGB-IR object detection datasets are also conducted, which demonstrate that IG-GAN can enhance the accuracy of object detection by integrating complementary information from different modalities.The code will be available at https://github.com/flower6top

    Hyperspectral Unmixing with Gaussian Mixture Model and Spatial Group Sparsity

    No full text
    In recent years, endmember variability has received much attention in the field of hyperspectral unmixing. To solve the problem caused by the inaccuracy of the endmember signature, the endmembers are usually modeled to assume followed by a statistical distribution. However, those distribution-based methods only use the spectral information alone and do not fully exploit the possible local spatial correlation. When the pixels lie on the inhomogeneous region, the abundances of the neighboring pixels will not share the same prior constraints. Thus, in this paper, to achieve better abundance estimation performance, a method based on the Gaussian mixture model (GMM) and spatial group sparsity constraint is proposed. To fully exploit the group structure, we take the superpixel segmentation (SS) as preprocessing to generate the spatial groups. Then, we use GMM to model the endmember distribution, incorporating the spatial group sparsity as a mixed-norm regularization into the objective function. Finally, under the Bayesian framework, the conditional density function leads to a standard maximum a posteriori (MAP) problem, which can be solved using generalized expectation-maximization (GEM). Experiments on simulated and real hyperspectral data demonstrate that the proposed algorithm has higher unmixing precision compared with other state-of-the-art methods
    corecore