57 research outputs found

    Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Get PDF
    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion

    Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Get PDF
    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models

    Loss of ARHGEF6 Causes Hair Cell Stereocilia Deficits and Hearing Loss in Mice

    Get PDF
    ARHGEF6 belongs to the family of guanine nucleotide exchange factors (GEFs) for Rho GTPases, and it specifically activates Rho GTPases CDC42 and RAC1. Arhgef6 is the X-linked intellectual disability gene also known as XLID46, and clinical features of patients carrying Arhgef6 mutations include intellectual disability and, in some cases, sensorineural hearing loss. Rho GTPases act as molecular switches in many cellular processes. Their activities are regulated by binding or hydrolysis of GTP, which is facilitated by GEFs and GTPase-activating proteins, respectively. RAC1 and CDC42 have been shown to play important roles in hair cell (HC) stereocilia development. However, the role of ARHGEF6 in inner ear development and hearing function has not yet been investigated. Here, we found that ARHGEF6 is expressed in mouse cochlear HCs, including the HC stereocilia. We established Arhgef6 knockdown mice using the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR-Cas9) genome editing technique. We showed that ARHGEF6 was indispensable for the maintenance of outer hair cell (OHC) stereocilia, and loss of ARHGEF6 in mice caused HC stereocilia deficits that eventually led to progressive HC loss and hearing loss. However, the loss of ARHGEF6 did not affect the synapse density and did not affect the mechanoelectrical transduction currents in OHCs at postnatal day 3. At the molecular level, the levels of active CDC42 and RAC1 were dramatically decreased in the Arhgef6 knockdown mice, suggesting that ARHGEF6 regulates stereocilia maintenance through RAC1/CDC42

    Optimum Conversion of Major Ginsenoside Rb1 to Minor Ginsenoside Rg3(S) by Pulsed Electric Field-Assisted Acid Hydrolysis Treatment

    No full text
    Ginsenoside Rg3(S) is a primary bioactive component in ginseng, which has pharmacological effects and nutritional activities. In the present study, pulsed electric field (PEF)-assisted acid hydrolysis processing was used to convert major ginsenoside Rb1 to minor ginsenoside Rg3(S). The optimum parameters of PEF assisted acid hydrolysis were analyzed by response surface methodology (RSM). The optimum processing conditions were: electric field intensity, 20 kVcm−1; acid concentration, 0.25 mol/L; pulse number, 10. The conversion rate of ginsenoside Rg3(S) achieved 68.58%, in accordance to the predicted value. The structure of hydrolyzed product was confirmed by 13C-NMR. The results suggested that PEF-assisted acid hydrolysis significantly enhanced conversion rate of ginsenoside Rg3(S)

    All-dielectric electromagnetically induced transparency-like metasurface with breaking symmetric

    No full text
    We investigate an all-dielectric metasurface to mimic the electromagnetically induced transparency-like phenomenon in the microwave. The unit cell is comprised of two hollow split ring resonators with different parameters, which form an asymmetric structure. The proposed metasurface acquires a high transmission efficiency at 17.17 GHz, which is caused by magnetic resonance. The corresponding physical mechanism is discussed and analyzed by the distributions of the electric and magnetic fields. The experiment result of the transmission spectra is well in agreement with the simulation data. The geometric parameter of hollow split ring resonators has deep influences on transmission spectra which leads to transparency peak variation. Concurrently, the imaginary parts of the effective permittivity and permeability for the proposed metasurface are presented to explain the low-loss property. Furthermore, the transparency peak is sensitive to the surrounding environment, which exhibits potential application in refractive index sensor

    BRG1 Promotes chromatin remodeling around DNA damage sites

    No full text
    Chromatin remodeling complexes play important roles in various DNA metabolism processes, including DNA damage repair. BRG1 is the core subunit of the SWI/SNF complex, which plays critical roles in cell cycle regulation, cell development, cell differentiation, and tumorigenesis. In the present study, we report that BRG1 depletion increased the percentage of apoptotic cells in etoposide-treated cells. Moreover, western blotting and immunofluorescence data showed that BRG1 depletion decreased H2AX phosphorylation and caused defective phosphorylated histone H2AX (γH2AX) clearance. Furthermore, we found that in both SW13 and U2OS cells, BRG1 expression could increase the sensitivity of genomic DNA to micrococcal nuclease (MNase) and facilitate chromatin relaxation around DNA damage sites. Thus, the results provide evidence that BRG1 plays an important role in early DNA damage repair by remodeling the chromatin structure near DNA damage sites

    Quantitative Analysis of Differential Proteome Expression in Epithelial-to-Mesenchymal Transition of Bladder Epithelial Cells Using SILAC Method

    No full text
    Epithelial-to-mesenchymal transition (EMT) is an essential biological process involved in embryonic development, cancer progression, and metastatic diseases. EMT has often been used as a model for elucidating the mechanisms that underlie bladder cancer progression. However, no study to date has addressed the quantitative global variation of proteins in EMT using normal and non-malignant bladder cells. We treated normal bladder epithelial HCV29 cells and low grade nonmuscle invasive bladder cancer KK47 cells with transforming growth factor-beta (TGF-β) to establish an EMT model, and studied non-treated and treated HCV29 and KK47 cells by the stable isotope labeling amino acids in cell culture (SILAC) method. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography/LTQ Orbitrap mass spectrometry. Among a total of 2994 unique identified and annotated proteins in HCV29 and KK47 cells undergoing EMT, 48 and 56 proteins, respectively, were significantly upregulated, and 106 and 24 proteins were significantly downregulated. Gene ontology (GO) term analysis and pathways analysis indicated that the differentially regulated proteins were involved mainly in enhancement of DNA maintenance and inhibition of cell-cell adhesion. Proteomes were compared for bladder cell EMT vs. bladder cancer cells, revealing 16 proteins that displayed similar changes in the two situations. Studies are in progress to further characterize these 16 proteins and their biological functions in EMT

    A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy

    No full text
    The difusion and perfusion magnetic resonance (MR) images can provide functional information abouttumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy featurefusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametricfunctional MR images including apparent difusion coefcient (ADC), fractional anisotropy (FA) andrelative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy modelwas created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion resultof the three fuzzy feature spaces, regions with high possibility belonging to tumour were generatedautomatically. The auto-segmentations of tumour in structural MR images were added in fnal autosegmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs fornine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVsshowed that, the mean volume diference was 8.69% (±5.62%); the mean Dice"s similarity coefcient(DSC) was 0.88 (±0.02); the mean sensitivity and specifcity of auto-segmentation was 0.87 (±0.04)and 0.98 (±0.01) respectively. High accuracy and efciency can be achieved with the new method,which shows potential of utilizing functional multi-parametric MR images for target defnition inprecision radiation treatment planning for patients with gliomas
    • …
    corecore