105 research outputs found

    FROST -- Fast row-stochastic optimization with uncoordinated step-sizes

    Full text link
    In this paper, we discuss distributed optimization over directed graphs, where doubly-stochastic weights cannot be constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its out-degree, which may be impractical in e.g., broadcast-based communication protocols. In contrast, we describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm applicable to directed graphs that does not require the knowledge of out-degrees; the implementation of which is straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly-convex functions given that the largest step-size is positive and sufficiently small.Comment: Submitted for journal publication, currently under revie

    Design and Control of a Novel Bionic Mantis Shrimp Robot

    Get PDF
    This article presents the development of a novel bionic robot, which is inspired by agile and fast mantis shrimp in the ocean. The developed bionic mantis shrimp robot has ten rigid-flexible swimming feet (pleopods) for swimming propulsion and a rope-driven spine for its body bending. By studying the motion trajectory of biological mantis shrimp, the kinematic gait planning of the bionic pleopod is completed and the central pattern generator controller of the bionic mantis shrimp robot applicable to the coupled motion of multiple pleopods is proposed. The controller is experimentally verified to effectively simulate the swimming motion of mantis shrimp, which enables the robot to reach a maximum swimming velocity of 0.28 m/s (0.46 body length per second) and a minimum turning radius of 0.36 m.The influence of control parameters on the robot's swimming performance is then investigated. Experiments are conducted to show that the oscillation frequency of the bionic pleopod plays a major positive role in the robot's swimming speed. This article has demonstrated the effectiveness of the proposed mechanism design and motion control method for a bionic mantis shrimp robot and laid the foundation for the further exploration of bionic mantis shrimp robots in rugged seabed environments

    Design and control of a novel bionic mantis shrimp robot

    Get PDF
    This article presents the development of a novel bionic robot, which is inspired by agile and fast mantis shrimp in the ocean. The developed bionic mantis shrimp robot has ten rigid-flexible swimming feet (pleopods) for swimming propulsion and a rope-driven spine for its body bending. By studying the motion trajectory of biological mantis shrimp, the kinematic gait planning of the bionic pleopod is completed and the central pattern generator controller of the bionic mantis shrimp robot applicable to the coupled motion of multiple pleopods is proposed. The controller is experimentally verified to effectively simulate the swimming motion of mantis shrimp, which enables the robot to reach a maximum swimming velocity of 0.28 m/s (0.46 body length per second) and a minimum turning radius of 0.36 m.The influence of control parameters on the robot's swimming performance is then investigated. Experiments are conducted to show that the oscillation frequency of the bionic pleopod plays a major positive role in the robot's swimming speed. This article has demonstrated the effectiveness of the proposed mechanism design and motion control method for a bionic mantis shrimp robot and laid the foundation for the further exploration of bionic mantis shrimp robots in rugged seabed environments

    DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1.

    Get PDF
    Let-7 miRNAs act as tumour suppressors by directly binding to the 3\u27UTRs of downstream gene products. The regulatory role of let-7 in downstream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines cell fates. For example, one target of the let-7 family is cyclin D1, which promotes G0/S cell cycle progression and oncogenesis, was correlated with endoribonuclease DICER1, another target of let-7. Down-regulated let-7 has been identified in many types of tumours, suggesting a feedback loop may exist between let-7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression through sequence-specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1-induced let-7 expression. In addition, we found that let-7 miRNAs expression decreased because of the p53-induced cell death response, with deregulated cyclin D1. Our results also showed that cyclin D1 is required for Nutlin-3 and TAX-induced let-7 expression in cancer repression and the cell death response. For the first time, we provide evidence that let-7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and importantly, that alteration of let-7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response

    Clinical outcomes and risk factors of coronary artery aneurysms after successful percutaneous coronary intervention and drug-eluting stent implantation for chronic total occlusions

    Get PDF
    AbstractObjectiveThe study aimed to analyze the risk factors and long-term outcomes associated with coronary artery aneurysms (CAAs) after successful percutaneous coronary intervention (PCI) and drug-eluting stent (DES) implantation in patients with CTOs.BackgroundThere are sporadic data available on post-procedure CAAs after transcatheter revascularization for CTOs.Methods and resultsA total of 141 patients with 149 CTOs who underwent successful CTO-PCI and DES implantation with angiographic follow-up from 2004 to 2010 were included. Patients were divided into CAA group and non-CAA group according to the presence of CAAs in the follow-up angiography. The independent predictors and major adverse cardiac events (MACEs) including cardiac death, myocardial infarction (MI) and target-vessel revascularization (TVR) were compared between two groups. The incidence of CAAs was 11.4% (17/149) after index procedure. Multivariate analysis showed that age (OR: 0.925, CI 0.873–0.980, P = 0.008), ostial occlusion (OR: 6.715, CI 1.473–30.610, P = 0.014), the parallel wire technique (OR: 6.167, CI 1.709–22.259, P = 0.005) and DES length (OR: 1.030, CI 1.002–1.058, P = 0.036) were the independent predictors of CAAs after successful CTO-PCI and DES implantation. MACEs were similar between two groups (adjusted hazard ratio 0.670; 95% CI 0.160–2.808; P = 0.584) during the 5-year follow-up.ConclusionsThe independent predictors of CAAs after successful CTO-PCI and DES implantation are age, ostial occlusion, the parallel wire technique and DES length. CAAs after index procedure are not frequently associated with adverse clinical events under dual antiplatelet therapy. Further large clinical studies are warranted to explore the clinical implications of patients with this distinct new entity
    • …
    corecore