106 research outputs found

    Joint Language Semantic and Structure Embedding for Knowledge Graph Completion

    Full text link
    The task of completing knowledge triplets has broad downstream applications. Both structural and semantic information plays an important role in knowledge graph completion. Unlike previous approaches that rely on either the structures or semantics of the knowledge graphs, we propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information. Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models with respect to a probabilistic structured loss, where the forward pass of the language models captures semantics and the loss reconstructs structures. Our extensive experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method. We also show that our method can significantly improve the performance in a low-resource regime, thanks to the better use of semantics. The code and datasets are available at https://github.com/pkusjh/LASS.Comment: COLING 202

    Rapid approach for cloning bacterial single-genes directly from soils

    Get PDF
    Obtaining functional genes of bacteria from environmental samples usually depends on library-based approach which is not favored as its large amount of work with small possibility of positive clones. A kind of bacterial single-gene encoding glutamine synthetase (GS) was selected as example to detect the efficiency of cloning strategy in this study. Five GS genes were directly cloned from soils using degenerate primers with two steps of nested polymerase chains reactions. The genes showed 94 to 99% amino acid identities to the homologs in the known database, and encoded proteins affiliated to GS I and GS II families, respectively. All the five genes could rescue the growth of Escherichia coli glutamine auxotroph mutant ET6017 in minimum medium (ammonium chloride was sole nitrogen source in this medium). This study develops one rapid approach for cloning bacterial single-genes directly from soils. Comparing with the conventional strategies for gene cloning from complex environmental samples, this method did not need making genomic library and isolating target genes from large amount of library clones. This approach distinctively demonstrates its advantages of rapidity and effectiveness particularly when it aims at cloning short single-genes that had known homologs in all kinds of nucleic acid databases.Keywords: Gene cloning, soil, glutamine synthetase, nested PCR, single-geneAfrican Journal of Biotechnology Vol. 12(32), pp. 5029-503

    A holistic review on fatigue properties of additively manufactured metals

    Full text link
    Additive manufacturing (AM) technology is undergoing rapid development and emerging as an advanced technique that can fabricate complex near-net shaped and light-weight metallic parts with acceptable strength and fatigue performance. A number of studies have indicated that the strength or other mechanical properties of AM metals are comparable or even superior to that of conventionally manufactured metals, but the fatigue performance is still a thorny problem that may hinder the replacement of currently used metallic components by AM counterparts when the cyclic loading and thus fatigue failure dominates. This article reviews the state-of-art published data on the fatigue properties of AM metals, principally including SS--NN data and fatigue crack growth data. The AM techniques utilized to generate samples in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, WAAM). Further, the fatigue properties of AM metallic materials that involve titanium alloys, aluminum alloys, stainless steel, nickel-based alloys, magnesium alloys, and high entropy alloys, are systematically overviewed. In addition, summary figures or tables for the published data on fatigue properties are presented for the above metals, the AM techniques, and the influencing factors (manufacturing parameters, e.g., built orientation, processing parameter, and post-processing). The effects of build direction, particle, geometry, manufacturing parameters, post-processing, and heat-treatment on fatigue properties, when available, are provided and discussed. The fatigue performance and main factors affecting the fatigue behavior of AM metals are finally compared and critically analyzed, thus potentially providing valuable guidance for improving the fatigue performance of AM metals.Comment: 201 pages, 154 figure

    Optical Flow Sensor/INS/Magnetometer Integrated Navigation System for MAV in GPS-Denied Environment

    Get PDF
    The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision

    Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK-LKB1 Signaling Axis.

    Get PDF
    Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis

    High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways

    Get PDF
    Introduction: Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. Methods: This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. Results: Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1-phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. Conclusions: These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.'973' National ST Major Project [2011CB503900]; National Natural Science Foundation of China [81270321, 81170101, 81370235]; Natural Science Foundation of Beijing, China [7122106]SCI(E)[email protected]; [email protected]

    A multimechanistic antibody targeting receptor-binding sites potently cross-protects against influenza B viruses

    Get PDF
    流感病毒HA是研制流感药物和流感疫苗的重要靶标,但HA具有高度变异性,如何在高变异HA中找到不变之处,即高度保守表位,是研制流感特效药物和广谱疫苗的关键。近年来国外报道的流感HA广谱中和单抗的识别位点均在较为保守的HA茎部区,而针对流感病毒与细胞受体结合部位的HA头部区尤其是RBS区,一直未能发现广谱中和抗体。夏宁邵教授团队通过探索多种免疫策略和筛选策略,成功筛选出一株广谱中和单抗12G6,识别一个位于HA头部RBS上的全新保守性表位。体外实验显示12G6人源化改造的C12G6抗体能高效中和1940-2016年间世界各地历年流行的代表三个遗传变异亚系的18个乙型流感病毒代表株对细胞的感染,并能保护小鼠致死性感染,治疗效果显著优于已报道的代表性抗体以及抗流感药物;C12G6与“达菲”联合用药具有明显的协同效果。此外,雪貂感染模型的预防和治疗效果进一步证实了C12G6作为抗体药物的治疗潜能。研究还显示该表位是病毒感染复制的关键表位,该位点的突变会造成病毒毒力显著下降。最后,研究揭示了C12G6通过五种不同的抗病毒作用机制发挥作用,提示其高效的抗病毒活性得益于多机制协同效应,这也是目前国内外第一次发现一个流感抗体能通过如此全面的抗病毒机制发挥作用。 该发现为研制能抵抗各种变异株的乙型流感特效治疗药物和通用疫苗带来新希望。 该研究工作依托分子疫苗学和分子诊断学国家重点实验室(厦门大学)、国家传染病诊断试剂与疫苗工程技术研究中心、厦门大学养生堂生物药物联合实验室完成。陈毅歆副教授、夏宁邵教授为该研究论文的共同通讯作者。在读博士研究生沈晨光、陈俊煜、李睿、王国松和硕士研究生张梦娅等为共同第一作者。【Abstract】Influenza B virus causes considerable disease burden worldwide annually, highlighting the limitations of current influenza vaccines and antiviral drugs. In recent years, broadly neutralizing antibodies (bnAbs) against hemagglutinin (HA) have emerged as a new approach for combating influenza. We describe the generation and characterization of a chimeric monoclonal antibody, C12G6, that cross-neutralizes representative viruses spanning the 76 years of influenza B antigenic evolution since 1940, including viruses belonging to the Yamagata, Victoria, and earlier lineages. Notably, C12G6 exhibits broad cross-lineage hemagglutination inhibition activity against influenza B viruses and has higher potency and breadth of neutralization when compared to four previously reported influenza B bnAbs. In vivo, C12G6 confers stronger cross-protection against Yamagata and Victoria lineages of influenza B viruses in mice and ferrets than other bnAbs or the anti-influenza drug oseltamivir and has an additive antiviral effect when administered in combination with oseltamivir. Epitope mapping indicated that C12G6 targets a conserved epitope that overlaps with the receptor binding site in the HA region of influenza B virus, indicating why it neutralizes virus so potently. Mechanistic analyses revealed that C12G6 inhibits influenza B viruses via multiple mechanisms, including preventing viral entry, egress, and HA-mediated membrane fusion and triggering antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity responses. C12G6 is therefore a promising candidate for the development of prophylactics or therapeutics against influenza B infection and may inform the design of a truly universal influenza vaccine.This research was supported by grants from the National Natural Science Foundation of China (31670934 and 81371817), the Ministry of Science and Technology of the People’s Republic of China (2011ZX09102-009-12 and 2012DFH30020), the Research Grants Council of the Hong Kong Special Administrative Region (7629/13M, 17103214, and 17154516), and a sponsored research agreement from Sanofi Pasteur. 研究工作得到了香港大学新发传染病国家重点实验室和赛诺菲巴斯德公司的技术支持和帮助,获得国家自然科学基金、新药创制国家科技重大专项、科技部对港科技合作项目等课题资助
    corecore