18 research outputs found

    Exploring the relationship between lactate metabolism and immunological function in colorectal cancer through genes identification and analysis

    Get PDF
    Introduction: Metabolic dysregulation is a widely acknowledged contributor for the development and tumorigenesis of colorectal cancer (CRC), highlighting the need for reliable prognostic biomarkers in this malignancy.Methods: Herein, we identified key genes relevant to CRC metabolism through a comprehensive analysis of lactate metabolism-related genes from GSEA MsigDB, employing univariate Cox regression analysis and random forest algorithms. Clinical prognostic analysis was performed following identification of three key genes, and consistent clustering enabled the classification of public datasets into three patterns with significant prognostic differences. The molecular pathways and tumor microenvironment (TME) of these patterns were then investigated through correlation analyses. Quantitative PCR was employed to quantify the mRNA expression levels of the three pivotal genes in CRC tissue. Single-cell RNA sequencing data and fluorescent multiplex immunohistochemistry were utilized to analyze relevant T cells and validate the correlation between key genes and CD4+ T cells.Results: Our analysis revealed that MPC1, COQ2, and ADAMTS13 significantly stratify the cohort into three patterns with distinct prognoses. Additionally, the immune infiltration and molecular pathways were significantly different for each pattern. Among the key genes, MPC1 and COQ2 were positively associated with good prognosis, whereas ADAMTS13 was negatively associated with good prognosis. Single-cell RNA sequencing (scRNA-seq) data illustrated that the relationship between three key genes and T cells, which was further confirmed by the results of fluorescent multiplex immunohistochemistry demonstrating a positive correlation between MPC1 and COQ2 with CD4+ T cells and a negative correlation between ADAMTS13 and CD4+ T cells.Discussion: These findings suggest that the three key lactate metabolism genes, MPC1, COQ2, and ADAMTS13, may serve as effective prognostic biomarkers and support the link between lactate metabolism and the immune microenvironment in CRC

    Distinct miRNAs associated with various clinical presentations of SARS-CoV-2 infection.

    Get PDF
    MicroRNAs (miRNAs) have been shown to play important roles in viral infections, but their associations with SARS-CoV-2 infection remain poorly understood. Here, we detected 85 differentially expressed miRNAs (DE-miRNAs) from 2,336 known and 361 novel miRNAs that were identified in 233 plasma samples from 61 healthy controls and 116 patients with COVID-19 using the high-throughput sequencing and computational analysis. These DE-miRNAs were associated with SASR-CoV-2 infection, disease severity, and viral persistence in the patients with COVID-19, respectively. Gene ontology and KEGG pathway analyses of the DE-miRNAs revealed their connections to viral infections, immune responses, and lung diseases. Finally, we established a machine learning model using the DE-miRNAs between various groups for classification of COVID-19 cases with different clinical presentations. Our findings may help understand the contribution of miRNAs to the pathogenesis of COVID-19 and identify potential biomarkers and molecular targets for diagnosis and treatment of SARS-CoV-2 infection

    Inversion of Glacier 3D Displacement from Sentinel-1 and Landsat 8 Images Based on Variance Component Estimation: A Case Study in Shishapangma Peak, Tibet, China

    No full text
    Offset tracking technology is widely studied to evaluate glacier surface displacements. However, few studies have used a cross-platform to this end. In this study, two heterogeneous data sources, Sentinel-1 and Landsat 8, from January 2019 to January 2021, were used to estimate the offset, and then the optimal estimation of the 3D deformation rate of a Himalayan glacier was obtained based on the joint model of variance component estimation. The results show that the maximum deformation rates of the glacier in the east–west direction, north–south direction, and vertical direction are 85, 126, and 88 mm/day, respectively. The results of the joint model were compared and analyzed with the results of simultaneous optical image pixel offset tracking. The results showed that the accuracy of the joint solution model increased by 41% in the east–west direction and 36% in the south–north direction. The regional flow velocity of the moraine glacier after the joint solution was consistent with the vector boundary of the glacier cataloging data. The time-series results of the glacier displacement were calculated using more images. These results indicate that the joint solution model is feasible for calculating temporal glacier velocity. The model can improve the time resolution of the monitoring results and obtain further information on glacier characteristics. Our results show that the glacier velocity is affected by local terrain slope and temperature. However, there is no absolute positive correlation between glacier velocity and slope. This study provides a reference for the joint acquisition of large-scale three-dimensional displacement of glaciers using multi-source remote sensing data and provides support for the identification and early warning of glacier disasters

    A novel adaptive terahertz system for reliable and efficient maritime communications under hostile sea conditions

    No full text
    Terahertz (THz) frequency band has been widely used in indoor, outdoor and space communications due to its advantage of large available bandwidth. However, limited research has been conducted to apply THz technique in maritime communications as hostile sea conditions cause significant path loss, thus leading to unacceptable signal error rate. In this paper, we propose a novel adaptive THz maritime communication system to tackle the above-mentioned challenge. Specifically, we design a joint source-channel coding scheme by using system random linear network coding (sRLNC) and Reed-Solomon (RS) to ensure transmission reliability. To further improve the transmission efficiency, we propose a novel triple-channel communication architecture facilitated by a very high frequency (VHF) feedback channel. With this design, the source data can be transmitted via the THz main channel while the coding redundancy is dispatched in the auxiliary channel. Meanwhile, the feedback channel allows sender to use an adaptive mechanism to achieve the transmission efficiency with higher transmission rate over long communication distance. In addition, we adopt the Doppler frequency offset in maritime environment to compensate both relative movement between communication parties and adversarial maritime factors, e.g., strong wind and extreme sea states. Simulation results demonstrate that our proposed THz system has remarkable capability not only to improve the communication efficiency up to 20Gbps compared to those conventional high frequency (HF), VHF and millimeter wave communication systems but also to transmit data over a longer distance with lower BERs.</p

    Polyamine metabolism patterns characterized tumor microenvironment, prognosis, and response to immunotherapy in colorectal cancer

    No full text
    Abstract Background Changes in Polyamine metabolism (PAM) have been shown to establish a suppressive tumor microenvironment (TME) and substantially influence the progression of cancer in the recent studies. However, newly emerging data have still been unable to fully illuminate the specific effects of PAM in human cancers. Here, we analyzed the expression profiles and clinical relevance of PAM genes in colorectal cancer (CRC). Methods Based on unsupervised consensus clustering and principal component analysis (PCA) algorithm, we designed a scoring model to evaluate the prognosis of CRC patients and characterize the TME immune profiles, with related independent immunohistochemical validation cohort. Through comparative profiling of cell communities defined by single cell sequencing data, we identified the distinct characteristics of polyamine metabolism in the TME of CRC. Results Three PAM patterns with distinct prognosis and TME features were recognized from 1224 CRC samples. Moreover, CRC patients could be divided into high- and low-PAMscore subgroups by PCA-based scoring system. High PAMscore subgroup were associated to more advanced stage, higher infiltration level of immunosuppressive cells, and unfavorable prognosis. These results were also validated in CRC samples from other public CRC datasets and our own cohort, which suggested PAM genes were ideal biomarkers for predicting CRC prognosis. Notably, PAMscore also corelated with microsatellite instability-high (MSI-H) status, higher tumor mutational burden (TMB), and increased immune checkpoint gene expression, implying a potential role of PAM genes in regulating response to immunotherapy. To further confirm above results, we demonstrated a high-resolution landscape of TME and cell–cell communication network in different PAM patterns using single cell sequencing data and found that polyamine metabolism affected the communication between cancer cells and several immune cells such as T cells, B cells and myeloid cells. Conclusion In total, our findings highlighted the significance of polyamine metabolism in shaping the TME and predicting the prognosis of CRC patients, providing novel strategies for immunotherapy and the targeting polyamine metabolites

    The role of brevican in glioma: promoting tumor cell motility <it>in vitro</it> and <it>in vivo</it>

    No full text
    Abstract Background Malignant glioma is a common primary tumor of the central nervous system. Brevican, an abundant extracellular matrix component in the adult brain, plays a critical role in the process of glioma. The mechanisms for the highly invasive behavior of gliomas are still poorly understood. The aim of this study was to examine whether brevican is a predictor of glioma and its roles in glioma cell motility. Methods In this study, immunohistochemistry staining for brevican expression was performed in malignant gliomas and benign controls. We also explored the effects of brevican on cell adhesion and migration in brevican-overexpressed cells. Knockdown of brevican expression was achieved by stable transfection of U251 cells transduced with a construct encoding a short hairpin DNA directed against the brevican gene, which correspondingly, down-regulated the proliferation, invasion and spread of brevican-expressing cells. Moreover, the role of brevican in the growth and progression of glioma was demonstrated by in vivo studies. Results Our results provide evidence for the molecular and cellular mechanisms that may underlie the motility-promoting role of brevican in the progression of glioma. The role of brevican as a target for immunotherapy might be taken into consideration in future studies. Conclusions This study suggests that expression of brevican is associated with glioma cell adhesion, motility and tumor growth, and also is related to glioma cell differentiation, therefore it may be a marker for malignance degree of glioma</p

    Exploring the role of pyroptosis in shaping the tumor microenvironment of colorectal cancer by bulk and single-cell RNA sequencing

    No full text
    Abstract Background Emerging studies have shown that pyroptosis plays a non-negligible role in the development and treatment of tumors. However, the mechanism of pyroptosis in colorectal cancer (CRC) remains still unclear. Therefore, this study investigated the role of pyroptosis in CRC. Methods A pyroptosis-related risk model was developed using univariate Cox regression and LASSO Cox regression analyses. Based on this model, pyroptosis-related risk scores (PRS) of CRC samples with OS time > 0 from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database were calculated. The abundance of immune cells in CRC tumor microenvironment (TME) was predicted by single-sample gene-set enrichment analysis (ssGSEA). Then, the responses to chemotherapy and immunotherapy were predicted by pRRophetic algorithm, the tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms, respectively. Moreover, the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset (PRISM) were used to explore novel drug treatment strategies of CRC. Finally, we investigated pyroptosis-related genes in the level of single-cell and validated the expression levels of these genes between normal and CRC cell lines by RT-qPCR. Results Survival analysis showed that CRC samples with low PRS had better overall survival (OS) and progression-free survival (PFS). CRC samples with low PRS had higher immune-related gene expression and immune cell infiltration than those with high PRS. Besides, CRC samples with low PRS were more likely to benefit from 5-fluorouracil based chemotherapy and anti-PD-1 immunotherapy. In novel drug prediction, some compounds such as C6-ceramide and noretynodrel, were inferred as potential drugs for CRC with different PRS. Single-cell analysis revealed pyroptosis-related genes were highly expressed in tumor cells. RT-qPCR also demonstrated different expression levels of these genes between normal and CRC cell lines. Conclusions Taken together, this study provides a comprehensive investigation of the role of pyroptosis in CRC at the bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) levels, advances our understanding of CRC characteristics, and guides more effective treatment regimens. Graphical Abstrac
    corecore