869 research outputs found

    Controlled Cardiac Computed Tomography

    Get PDF
    Cardiac computed tomography (CT) has been a hot topic for years because of the clinical importance of cardiac diseases and the rapid evolution of CT systems. In this paper, we propose a novel strategy for controlled cardiac CT that may effectively reduce image artifacts due to cardiac and respiratory motions. Our approach is radically different from existing ones and is based on controlling the X-ray source rotation velocity and powering status in reference to the cardiac motion. We theoretically show that by such a control-based intervention the data acquisition process can be optimized for cardiac CT in the cases of periodic and quasiperiodic cardiac motions. Specifically, we formulate the corresponding coordination/control schemes for either exact or approximate matches between the ideal and actual source positions, and report representative simulation results that support our analytic findings

    Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways

    Get PDF
    Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration

    Electron-doping evolution of the low-energy spin excitations in the iron arsenide BaFe2x_{2-x}Nix_{x}As2_{2} superconductors

    Full text link
    We use elastic and inelastic neutron scattering to systematically investigate the evolution of the low-energy spin excitations of the iron arsenide superconductor BaFe2-xNixAs2 as a function of nickel doping x. In the undoped state, BaFe2As2 exhibits a tetragonal-to-orthorhombic structural phase transition and simultaneously develops a collinear antiferromagnetic (AF) order below TN = 143 K. Upon electron-doping of x = 0.075 to induce bulk superconductivity with Tc = 12.3 K, the AF ordering temperature reduces to TN = 58 K.We show that the appearance of bulk superconductivity in BaFe1.925Ni0.075As2 coincides with a dispersive neutron spin resonance in the spin excitation spectra, and a reduction in the static ordered moment. For optimally doped BaFe1.9Ni0.1As2 (Tc = 20 K) and overdoped BaFe1.85Ni0.15As2 (Tc = 15 K) superconductors, the static AF long-range order is completely suppressed and the spin excitation spectra are dominated by a resonance and spin-gap at lower energies. We determine the electron-doping dependence of the neutron spin resonance and spin gap energies, and demonstrate that the three-dimensional nature of the resonance survives into the overdoped regime. If spin excitations are important for superconductivity, these results would suggest that the three-dimensional character of the electronic superconducting gaps are prevalent throughout the phase diagram, and may be critical for superconductivity in these materials

    Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering

    Get PDF
    We use polarized inelastic neutron scattering (INS) to study spin excitations of optimally hole-doped superconductor Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_{2} (Tc=38T_c=38 K). In the normal state, the imaginary part of the dynamic susceptibility, χ(Q,ω)\chi^{\prime\prime}(Q,\omega), shows magnetic anisotropy for energies below \sim7 meV with c-axis polarized spin excitations larger than that of the in-plane component. Upon entering into the superconducting state, previous unpolarized INS experiments have shown that spin gaps at \sim5 and 0.75 meV open at wave vectors Q=(0.5,0.5,0)Q=(0.5,0.5,0) and (0.5,0.5,1)(0.5,0.5,1), respectively, with a broad neutron spin resonance at Er=15E_r=15 meV. Our neutron polarization analysis reveals that the large difference in spin gaps is purely due to different spin gaps in the c-axis and in-plane polarized spin excitations, resulting resonance with different energy widths for the c-axis and in-plane spin excitations. The observation of spin anisotropy in both opitmally electron and hole-doped BaFe2_2As2_2 is due to their proximity to the AF ordered BaFe2_2As2_2 where spin anisotropy exists below TNT_N.Comment: 5 pages, 4 figure
    corecore