8,155 research outputs found
An iterative implicit diagonally-dominant factorization algorithm for solving the Navier-Stokes equations
Presented here is an algorithm for solving the multidimensional unsteady Navier-Stokes equations for compressible flows. It is based on a diagonally-dominant approximate factorization procedure. The factorization error and the timewise linearization error associated with this procedure are reduced by performing Newton-type inner iterations at each time step. The inviscid fluxes are evaluated by the fourth-order central differencing scheme amended with a numerical dissipation directly proportional to the entire dissipative part of the truncation error intrinsic to the third order biased upwind scheme. The important features of the proposed solution are elucidated by the numerical results of the convection of a vortex and the backward-facing step flows
Observation and Understanding of the Initial Unstable Electrical Contact Behaviors
Reliable and long-lifetime electrical contact is a very important issue in the field of radio frequency microelectromechanical systems (MEMS) and in energy transmission applications. In this paper, the initial unstable electrical contact phenomena under the conditions of micro-newton-scale contact force and nanometer-scale contact gap have been experimentally observed. The repetitive contact bounces at nanoscale are confirmed by the measured instantaneous waveforms of contact force and contact voltage. Moreover, the corresponding physical model for describing the competition between the electrostatic force and the restoring force of the mobile contact is present. Then, the dynamic process of contact closure is explicitly calculated with the numerical method. Finally, the effects of spring rigidness and open voltage on the unstable electrical contact behaviors are investigated experimentally and theoretically. This paper highlights that in MEMS systems switch, minimal actuation velocity is required to prevent mechanical bounce and excessive wear
Power allocation for cache-aided small-cell networks with limited backhaul
Cache-aided small-cell network is becoming an effective method to improve the transmission rate and reduce the backhaul load. Due to the limited capacity of backhaul, less power should be allocated to users whose requested contents do not exist in the local caches to maximize the performance of caching. In this paper, power allocation is considered to improve the performance of cache-aided small-cell networks with limited backhaul, where interference alignment (IA) is utilized to manage interferences among users. Specifically, three power allocation algorithms are proposed. First, we come up with a power allocation algorithm to maximize the sum transmission rate of the network, considering the limitation of backhaul. Second, in order to have more users meet their rate requirements, a power allocation algorithm to minimizing the average outage probability is also proposed. In addition, in order to further improve the users’ experience, a power allocation algorithm that maximizes the average satisfaction of all the users is also designed. Simulation results are provided to show the effectiveness of the three proposed power allocation algorithms for cache-aided small-cell networks with limited backhaul
PQCD approach to exclusive B decays
I review the recent progress on the perturbative QCD approach to exclusive
meson decays, discussing the comparison of collinear and
factorizations, the CP asymmetry in the decay, penguin
enhancement, the branching ratio of the decay, and three-body
nonleptonic decays.Comment: 11 pages, based on talks presented at Flavor Physics and CP
Violation, Philadelphia, USA, May 2002, at the 3rd Workshop on Higher
Luminosity B Factories, Kanagawa, Japan, Aug. 2002, and at Summer Institute
2002, Yamanashi, Japan, Aug. 200
- …
