8,861 research outputs found

    Effects of macroscopic propagation on spectra of broadband supercontinuum harmonics and isolated-attosecond-pulse generation: Coherent control of the electron quantum trajectories in two-color laser fields

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.86.013411.Recently it was shown that broadband supercontinuum harmonics can be produced from the long-trajectory electrons in the single-atom response by the coherent control of the electron trajectories through optimized two-color laser fields. Such supercontinuum harmonics can be superposed to generate an isolated sub-30-attosecond (as) pulse [Liu et al., Phys. Rev. A 84, 033414 (2011)]. In this paper, we investigate the effect of macroscopic propagation on the supercontinuum harmonic spectra and the subsequent attosecond-pulse generation of atomic hydrogen. The time-dependent Schrödinger equation is solved accurately and efficiently by means of the time-dependent generalized pseudospectral method. The effects of macroscopic propagation are investigated in near and far field by solving Maxwell's equation. The results show that the contribution of short-trajectory electron emission is increased when the macroscopic propagation is considered. However, the characteristics of the dominant long-trajectory electron emission (in the single-atom response case) are not changed, and an isolated 53 as pulse can be generated in the near field. Moreover, in the far field, the contribution of long-trajectory electron emission is still dominant for both on-axis and off-axis cases. As a result, an isolated 42 as pulse can be generated directly. Similar results are obtained when the atomic target position is changed. Therefore, the proposed method for the single ultrashort attosecond-pulse generation can be realized by means of the coherent control of the electron quantum paths in appropriately optimized two-color laser fields

    A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing Transform

    Get PDF
    This study introduces a new adaptive time-frequency (TF) analysis technique, synchrosqueezing transform (SST), to explore the dynamics of a laser-driven hydrogen atom at an {\it ab initio} level, upon which we have demonstrated its versatility as a new viable venue for further exploring quantum dynamics. For a signal composed of oscillatory components which can be characterized by instantaneous frequency, the SST enables rendering the decomposed signal based on the phase information inherited in the linear TF representation with mathematical support. Compared with the classical type TF methods, the SST clearly depicts several intrinsic quantum dynamical processes such as selection rules, AC Stark effects, and high harmonic generation

    Optimization of three-color laser field for the generation of single ultrashort attosecond pulse

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1364/OE.19.023857.We present an efficient and realizable scheme for the generation of an ultrashort single attosecond (as) pulse. The feasibility of such a scheme is demonstrated by solving accurately the time-dependent Schrödinger equation using the time-dependent generalized pseudospectral (TDGPS) method. This scheme involves the use of the optimization of the three-color laser fields. The optimized laser pulse is synthesized by three one-color laser pulses with proper relative phases. It can provide a longer acceleration time for the tunneling and oscillating electrons, and allows the electrons to gain more kinetic energy. We show that the plateau of high-order harmonic generation is extended dramatically and a broadband supercontinuum spectra is produced. As a result, an isolated 23 as pulse with a bandwidth of 163 eV can be obtained directly by superposing the supercontinuum harmonics near the cutoff region. We will show that such a metrology can be realized experimentally

    A Study of the Digital Divide Evaluation Model for Government Agencies - A Taiwanese Local Government\u27s Perspective

    Get PDF
    This paper examines the Taiwanese government’s ways of constructing a measurement model and an empirical study of digital divide among government agencies. On the basis of Gowin\u27s Vee structure, this paper first refers to the Grounded Theory in the establishment of the draft list for the measurement of the digital divide in local governments. Furthermore, it constructs five dimensions and 42 measurement factors with an expert questionnaire and the Analytic Hierarchy Process (AHP) for the digital divide evaluation model of government agencies. Finally, this paper measures the actual levels of digital divide in local governments, with the digital divide evaluation model in examining the degrees of digitalization, pros, and cons in association with digital divide. It is hoped that the results would serve as a reference for government agencies of all levels in formulating their digitalization strategies

    Coherent control of the electron quantum paths for the generation of single ultrashort attosecond laser pulse

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.84.033414.We report a mechanism and a realizable approach for the coherent control of the generation of an isolated and ultrashort attosecond (as) laser pulse from atoms by optimizing the two-color laser fields with a proper time delay. Optimizing the laser pulse shape allows the control of the electron quantum paths and enables high-harmonic generation from the long- and short-trajectory electrons to be enhanced and split near the cutoff region. In addition, it delays the long-trajectory electron emission time and allows the production of extremely short attosecond pulses in a relatively narrow time duration. As a case study, we show that an isolated 30 as pulse with a bandwidth of 127 eV can be generated directly from the contribution of long-trajectory electrons alone

    Interphase mass transfer in various types of column

    Get PDF
    Call number: LD2668 .T4 1957 C48Master of Scienc

    Childbearing May Increase the Risk of Nondiabetic Cataract in Chinese Women’s Old Age

    Get PDF
    Backgrounds. Ocular changes may arise during pregnancy and after childbirth, but very few studies have reported the association between childbearing and cataract among older adults. Methods. 14,292 individuals aged 60+ years were recruited in Xiamen, China, in 2013. Physician-diagnosed cataract and diabetes status were assessed by a self-reported questionnaire. Childbearing status was measured by number of children (NOC). Structural equation modeling (SEM) analysis was conducted to examine the relationships among NOC, diabetes, and cataract. Gender-specific logistic models regressing nondiabetic cataract on NOC were performed by adjusting some covariates. Results. 14,119 participants had complete data, of whom 5.01% suffered from cataract, with higher prevalence in women than men (6.41% versus 3.51%). Estimates of SEM models for women suggested that both NOC and diabetes were risk factors for cataract and that no correlation existed between NOC and diabetes. Women who had one or more children faced roughly 2–4 times higher risk of nondiabetic cataract than their childless counterparts (OR [95% CI] = 3.88 [1.24, 17.71], 3.21 [1.04, 14.52], 4.32 [1.42, 19.44], 4.41 [1.46, 19.74], and 3.98 [1.28, 18.10] for having 1, 2, 3, 4-5, and 6 or more children, resp.). Conclusions. Childbearing may increase the risk of nondiabetic cataract in Chinese women’s older age

    Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field

    Get PDF
    Near- and below-threshold harmonic generation provides a potential approach to generate vacuum-ultraviolet frequency comb. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of caesium (Cs) atoms in an intense 3,600-nm mid-infrared laser field. Combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, the roles of multiphoton and multiple rescattering trajectories on the near- and below-threshold harmonic generation processes are clarified. We find that the multiphoton-dominated trajectories only involve the electrons scattered off the higher part of the combined atom-field potential followed by the absorption of many photons in near- and below-threshold regime. Furthermore, only the near-resonant below-threshold harmonic is exclusive to exhibit phase locked features. Our results shed light on the dynamic origin of the near- and below-threshold harmonic generation.This work was partially supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. P.-C.L. is partially supported by the National Natural Science Foundation of China (grants nos. 11364039 and 11465016), the Natural Science Foundation of Gansu Province (grant no. 1308RJZA195) and the Education Department of Gansu Province (grant no. 2014A-010). We also would like to acknowledge the partial support of the Ministry of Science and Technology and the National Taiwan University (grants nos NTU-104R104021 and NTU-ERP-104R8700-2). We would also like to thank Dr Tak-San Ho and Liang-Yan Hsu (Princeton University) and Dr Dmitry A. Telnov (St Petersburg State University) for helpful discussions and suggestions

    Online platform for applying space–time scan statistics for prospectively detecting emerging hot spots of dengue fever

    Get PDF
    Abstract Background Cases of dengue fever have increased in areas of Southeast Asia in recent years. Taiwan hit a record-high 42,856 cases in 2015, with the majority in southern Tainan and Kaohsiung Cities. Leveraging spatial statistics and geo-visualization techniques, we aim to design an online analytical tool for local public health workers to prospectively identify ongoing hot spots of dengue fever weekly at the village level. Methods A total of 57,516 confirmed cases of dengue fever in 2014 and 2015 were obtained from the Taiwan Centers for Disease Control (TCDC). Incorporating demographic information as covariates with cumulative cases (365 days) in a discrete Poisson model, we iteratively applied space–time scan statistics by SaTScan software to detect the currently active cluster of dengue fever (reported as relative risk) in each village of Tainan and Kaohsiung every week. A village with a relative risk >1 and p value <0.05 was identified as a dengue-epidemic area. Assuming an ongoing transmission might continuously spread for two consecutive weeks, we estimated the sensitivity and specificity for detecting outbreaks by comparing the scan-based classification (dengue-epidemic vs. dengue-free village) with the true cumulative case numbers from the TCDC’s surveillance statistics. Results Among the 1648 villages in Tainan and Kaohsiung, the overall sensitivity for detecting outbreaks increases as case numbers grow in a total of 92 weekly simulations. The specificity for detecting outbreaks behaves inversely, compared to the sensitivity. On average, the mean sensitivity and specificity of 2-week hot spot detection were 0.615 and 0.891 respectively (p value <0.001) for the covariate adjustment model, as the maximum spatial and temporal windows were specified as 50% of the total population at risk and 28 days. Dengue-epidemic villages were visualized and explored in an interactive map. Conclusions We designed an online analytical tool for front-line public health workers to prospectively detect ongoing dengue fever transmission on a weekly basis at the village level by using the routine surveillance data

    Lipopolysaccharide-stimulated Leukocytes Contribute to Platelet Aggregative Dysfunction, Which is Attenuated by Catalase in Rats

    Get PDF
    Endotoxemia causes several hematological dysfunctions, including platelet degranulation or disseminated intravascular coagulation, which lead to thrombotic and hemorrhagic events. Here, we tested the hypothesis that bacterial lipopolysaccharide (LPS)-stimulated leukocytes contribute to platelet aggregative dysfunction, and this function is attenuated by antioxidants. Plateletrich plasma (PRP) was prepared from whole blood of normal and endotoxemic rats. The ability of platelet aggregation was measured by an aggregometer. LPS (50–100 μg/mL) was incubated with PRP, whole blood and PRP with polymorphonuclear leukocytes (PMNs) for 30 minutes, 60 minutes and 90 minutes, and platelet aggregation was detected. LPS-induced platelet aggregative dysfunction was undetectable in intact PRP which was isolated from normal whole blood, whereas it was detected in PRP isolated from endotoxemic rats and LPS-treated whole blood. Moreover, the effect of LPS-induced platelet aggregative dysfunction on intact PRP was observed when the PMNs were added. LPS-induced platelet aggregative dysfunction was significantly attenuated by catalase alone and in combination with NG-nitro-L-arginine methyl ester, but not by NG-nitro-L-arginine methyl ester alone. These results indicate that LPS-stimulated PMNs modulate platelet aggregation during LPS treatment and the effects are reversed by antioxidants. PMNs serve as an approach to understand LPS-induced platelet aggregative dysfunction during endotoxemia. During this process, the generation of reactive oxygen species, hydrogen peroxide especially, from LPS-stimulated PMNs could be an important potential factor in LPS-induced platelet aggregative dysfunction. Catalase contributes to the prevention of platelet dysfunction during LPS-induced sepsis
    • …
    corecore