82,015 research outputs found
Optimization of rotor blades for combined structural, performance, and aeroelastic characteristics
The strategies whereby helicopter rotor blades can be optimized for combined structural, inertial, dynamic, aeroelastic, and aerodynamic performance characteristics are outlined. There are three key ingredients in the successful execution of such an interdisciplinary optimization. The first is the definition of a satisfactory performance index that combines all aspects of the problem without too many constraints. The second element is the judicious choice of computationally efficient analysis tools for the various quantitative components in both the cost functional and constraints. The third element is an effective strategy for combining the various disciplines either in parallel or sequential optimizations
Detection of the large scale alignment of massive galaxies at z~0.6
We report on the detection of the alignment between galaxies and large-scale
structure at z~0.6 based on the CMASS galaxy sample from the Baryon Oscillation
Spectroscopy Survey data release 9. We use two statistics to quantify the
alignment signal: 1) the alignment two-point correlation function which probes
the dependence of galaxy clustering at a given separation in redshift space on
the projected angle (theta_p) between the orientation of galaxies and the line
connecting to other galaxies, and 2) the cos(2theta)-statistic which estimates
the average of cos(2theta_p) for all correlated pairs at given separation. We
find significant alignment signal out to about 70 Mpc/h in both statistics.
Applications of the same statistics to dark matter halos of mass above 10^12
M_sun/h in a large cosmological simulation show similar scale-dependent
alignment signals to the observation, but with higher amplitudes at all scales
probed. We show that this discrepancy may be partially explained by a
misalignment angle between central galaxies and their host halos, though
detailed modeling is needed in order to better understand the link between the
orientations of galaxies and host halos. In addition, we find systematic trends
of the alignment statistics with the stellar mass of the CMASS galaxies, in the
sense that more massive galaxies are more strongly aligned with the large-scale
structure.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter
Dominant moving species in the formation of amorphous NiZr by solid-state reaction
The displacements of W and Hf markers have been monitored by backscattering of MeV He to study the growth of the amorphous NiZr phase by solid-state reaction. We find that the Ni is the dominant moving species in this reaction
Modelling Epsilon Aurigae without solid particles
Three components can be expected to contribute to the emission of epsilon Aurigae. There is a primary F star. There is an opaque disk which occults it, and there is a gas stream which is observed to produce absorption lines. Evidence that the disk is not responsible for the gas stream lines comes both from the radial velocities, which are too small, and from the IR energy distribution out of eclipse, which shows free-free emission that would produce inadequate optical depth in electron scattering. The color temperature of the IR excess can give misleading indications of low temperature material. Free-free emission at 10,000 K between 10 and 20 microns has a color temperature of 350 K. Attempts to mold the system are discussed
Inclusive Decays of Bottom Hadrons in New Formulation of Heavy Quark Effective Field Theory
We apply the new formulation of heavy quark effective field theory (HQEFT) to
the inclusive decays of bottom hadrons. The long-term ambiguity of using heavy
quark mass or heavy hadron mass for inclusive decays is clarified within the
framework of the new formulation of HQEFT. The order corrections are
absent and contributions from terms are calculated in detail. This
enables us to reliably extract the important CKM matrix element from
the inclusive semileptonic decay rates. The resulting lifetime ratios
and are found to well agree
with the experimental data. We also calculate in detail the inclusive
semileptonic branching ratios and the ratios of the and decay
rates as well as the charm countings in the , and
systems. For decays, all the observables are found to be consistent with
the experimental data. More precise data for the decays and further
experimental measurements for the and systems will be very
useful for testing the framework of new formulation of HQEFT at the level of
higher order corrections.Comment: 20 pages, RevTex, 8 figures, 3 tables, revised version with `dressed
heavy quark' being addressed, to be published in Int. J. Mod. Phys.
On the constrained KP hierarchy
An explanation for the so-called constrained hierarhies is presented by
linking them with the symmetries of the KP hierarchy. While the existence of
ordinary symmetries (belonging to the hierarchy) allows one to reduce the KP
hierarchy to the KdV hierarchies, the existence of additional symmetries allows
to reduce KP to the constrained KP.Comment: 7pp, LaTe
Three-dimensional physics and the pressure of hot QCD
We update Monte Carlo simulations of the three-dimensional SU(3) + adjoint
Higgs theory, by extrapolating carefully to the infinite volume and continuum
limits, in order to estimate the contribution of the infrared modes to the
pressure of hot QCD. The sum of infrared contributions beyond the known 4-loop
order turns out to be a smooth function, of a reasonable magnitude and specific
sign. Unfortunately, adding this function to the known 4-loop terms does not
improve the match to four-dimensional lattice data, in spite of the fact that
other quantities, such as correlation lengths, spatial string tension, or quark
number susceptibilities, work well within the same setup. We outline possible
ways to reduce the mismatch.Comment: 14 page
Implications of Recent Measurements
The recent measurements of the color-suppressed modes imply non-vanishing relative final-state interaction (FSI)
phases among various decay amplitudes. Depending on whether or
not FSIs are implemented in the topological quark-diagram amplitudes, two
solutions for the parameters and are extracted from data using
various form-factor models. It is found that is not universal:
and with a relative phase
of order between and . If FSIs are not included in
quark-diagram amplitudes from the outset, and
will become smaller. The large value of compared to
or naive expectation implies the importance of
long-distance FSI contributions to color-suppressed internal -emission via
final-state rescatterings of the color-allowed tree amplitude.Comment: 17 pages. The Introduction is substantially revised and the order of
the presentation in Sec. 2 is rearranged. To appear in Phys. Re
- …